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Abstract Technical debt refers to the consequences of sub-optimal decisions
made during software development that prioritize short-term benefits over
long-term maintainability. Self-Admitted Technical Debt (SATD) is a specific
form of technical debt, explicitly documented by developers within software
artifacts such as source code comments and commit messages. As SATD can
hinder software development and maintenance, it is crucial to address and pri-
oritize it effectively. However, current methodologies lack the ability to auto-
matically estimate the repayment effort of SATD based on its textual descrip-
tions. To address this limitation, we propose a novel approach for automat-
ically estimating SATD repayment effort, utilizing a comprehensive dataset
comprising 341,740 SATD items from 2,568,728 commits across 1,060 Apache
repositories. Our findings show that different types of SATD require vary-
ing levels of repayment effort, with code/design, requirement, and test debt
demanding greater effort compared to non-SATD items, while documentation
debt requires less. We introduce and evaluate machine learning methodologies,
particularly BERT and TextCNN, which outperforms classic machine learning
methods and the naive baseline in estimating repayment effort. Additionally,
we summarize keywords associated with varying levels of repayment effort that
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occur during SATD repayment. Our contributions aim to enhance the prioriti-
zation of SATD repayment effort and resource allocation efficiency, ultimately
benefiting software development and maintainability.

1 Introduction

Technical debt is a metaphor used to describe the consequences of sub-optimal
decisions made during software development that prioritize short-term bene-
fits over long-term software maintainability and evolvability (Avgeriou et al.,
2016). As technical debt accumulates, it can negatively impact the develop-
ment process, hindering the ability to make changes to the software, such
as fixing bugs or implementing new features. Self-Admitted Technical Debt
(SATD) (Potdar and Shihab, 2014) is a form of technical debt that is ex-
plicitly documented by developers within different software artifacts, such as
source code comments, commit messages, issue tracking systems, and pull re-
quests (Zampetti et al., 2021). For instance, a developer may leave a comment
in the code suggesting the removal of unnecessary code in the future: “TODO:
we need to remove the dead code”. In another example, a developer may docu-
ment the low performance of a method: “This method is inefficient and could
be refactored for better performance”.

In recent years, there has been a growing interest in SATD identification,
with numerous studies focusing on identifying SATD from various sources
(Ren et al., 2019; Li et al., 2022a, 2023a). However, effective SATD manage-
ment requires not only identification but also estimation of the effort needed
for its repayment. This estimation is essential for prioritizing the repayment
of technical debt items and allocating resources efficiently; sometimes devel-
opers are faced with hundreds or even thousands of technical debt items, and
prioritizing them becomes a major challenge. While the measurement of tech-
nical debt repayment (commonly known as technical debt principal) has been
extensively studied and even integrated into industrial tools like SonarQube,
this has not been accomplished for SATD. Estimating the repayment effort of
SATD involves natural language documentation by developers, which is fun-
damentally different from detecting technical debt through methods such as
static code analysis. SATD is essential in addition to technical debt detection
through static code analysis because they complement each other (Li et al.,
2020). Previous research emphasizes the automatic estimation of SATD repay-
ment effort as a critical feature desired by software engineers and managers
(Li et al., 2022b). However, no existing approaches address this issue, creat-
ing a knowledge gap that hinders the prioritization of SATD repayment and
efficient resource allocation in software development processes.

To address this challenge, we first explore the effort required to repay dif-
ferent types of SATD and non-SATD items and subsequently evaluate various
machine learning approaches for automatically estimating the repayment effort
required for SATD using textual information. To achieve this goal, we gath-
ered all accessible commits, along with their corresponding commit messages
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and code changes, from 1,060 Apache repositories. We then identified SATD
items by analyzing the commit messages and assessed the repayment effort
for each SATD item based on the related code changes. Using this dataset for
training, we assessed the performance of various machine learning models and
contrasted the outcomes with a naive baseline for automatically estimating the
effort required to pay back SATD. Finally, we summarized the keywords that
correlate with varying levels of repayment effort, aiming to uncover patterns
that could assist in understanding the factors influencing the complexity of
repaying SATD.

We decided to use commit messages for SATD identification, instead of the
other aforementioned sources (e.g. source code comments, issues), for three
main reasons: 1) commit messages usually document resolved SATD, while
other sources also discuss SATD that is not resolved yet; 2) commits consist
of code changes and are accompanied by commit messages that provide con-
text and purpose for those changes, unlike other sources where code changes
and comments are not directly connected; 3) a sufficient quantity of commit
messages is available for analysis.

The primary contributions of this paper encompass the following:

– Assembling an extensive dataset on SATD repayment effort. We
gathered a comprehensive dataset consisting of 341,740 SATD items from
2,568,728 commits derived from 1,060 Apache repositories. For each SATD
item, this dataset includes lines of code added and deleted, the number of
files added, modified, and deleted, as well as varying significance levels of
code changes (Fluri and Gall, 2006; Fluri et al., 2007). To foster further
research in this domain, we make our dataset publicly available1.

– Presenting the difference in repayment effort between diverse
SATD and non-SATD items. Our findings reveal that code/design
debt, requirement debt, and test debt necessitate greater repayment ef-
fort compared to non-SATD items, whereas documentation debt demands
less repayment effort.

– Introducing and evaluating approaches for automatically estimat-
ing SATD repayment effort. Our results demonstrate that SATD effort
can be accurately predicted. Particularly, deep learning methods, such as
BERT and TextCNN, outperform classic machine learning techniques and
the naive baseline by a considerable margin in estimating repayment effort.

– Summarizing keywords associated with disparate levels of repay-
ment effort. We analyze and summarize the keywords correlated with
varying levels of repayment effort that arise during the process of repaying
SATD. This contribution helps in understanding the factors influencing the
complexity of SATD repayment.

The organization of this paper is as follows. In Section 2, we discuss re-
lated work. The case study design is elaborated in Section 3. The results are
presented and discussed in Section 4 and Section 5, respectively. In Section 6,
we evaluate the threats to validity. Finally, we draw conclusions in Section 7.

1 https://github.com/yikun-li/satd-repayment-effort

https://github.com/yikun-li/satd-repayment-effort
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2 Related Work

This study aims to investigate the effort required to repay SATD. Accordingly,
we categorize the relevant literature into two main sections: A) prior research
on SATD in general, and B) earlier studies related to the analysis of repayment
effort for technical debt.

2.1 Self-Admitted Technical Debt in General

The initial investigation into SATD in source code comments was conducted
by Potdar and Shihab (2014), who examined four open-source projects and
discovered that SATD comments were present in 2.4% to 31% of source files,
and only 26.3% to 63.5% of the identified SATD comments were removed af-
ter being introduced. Maldonado and Shihab (2015) expanded on this work by
classifying SATD into five categories (design, requirement, defect, documen-
tation, and test debt) based on the analysis of 33,000 code comments from
open-source five projects. Their results showed that design debt was the most
frequent form of SATD, accounting for 42% to 84% of classified cases.

Subsequent to the exploration of SATD, researchers have shown consid-
erable interest in devising automated methods for SATD detection. Several
machine learning approaches (Ren et al., 2019; Li et al., 2022a, 2023a; Guo
et al., 2021) have been employed to detect different types of SATD items from
various sources. Ren et al. (2019) developed a Convolutional Neural Network-
based approach to enhance the accuracy and explainability of SATD detection,
particularly for cross-project prediction. Li et al. (2022a) generated a dataset
of 4,200 issues from seven open-source projects and proposed a machine learn-
ing approach to detect SATD in issue tracking systems, outperforming baseline
methods, benefiting from knowledge transfer, and extracting intuitive SATD
keywords. Li et al. (2023a) also introduced an automated SATD identification
approach from multiple sources, such as source code comments, commit mes-
sages, pull requests, and issue tracking systems, leveraging a multitask learning
technique. Guo et al. (2019) suggested a simple heuristic approach for SATD
identification, demonstrating that it performs similarly or better than exist-
ing methods with a high overlap in correct identification, and recommended
that future SATD identification studies utilize this as an easy-to-implement
baseline.

Additionally, researchers explored the repayment of SATD. Maldonado
et al. (2017) evaluated the repayment of SATD in five open-source projects
and observed that the majority of SATD is eventually eliminated, mostly by
those who introduced it. They found that it takes 18 to 172 days to remove
SATD comments on average. Zampetti et al. (2018) also studied the removal
of SATD in five Java open-source projects and discovered that 20% to 50% of
SATD is unintentionally removed, and only 8% of debt removal is documented
in commit messages.
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2.2 Repayment Effort for Technical Debt

Numerous studies have investigated the effort of paying back technical debt.
Xiao et al. (2016) introduced a novel approach for the automatic detection,
quantification, and modeling of architectural debt in software systems. The
authors quantified effort by measuring the number of lines of code modified
and committed to fix bugs. Their evaluation carried out on seven large-scale
open-source projects revealed that their approach effectively uncovers how ar-
chitectural issues evolve into technical debt over time. Martini et al. (2018)
conducted a case study within a large company, establishing a comprehensive
framework for the semi-automated identification and estimation of architec-
tural debt. In their effort estimation, they considered factors such as the num-
ber of files, lines of code, changes in all files, and McCabe’s and Halstead’s
complexity metrics. Nugroho et al. (2011) proposed an approach to quantify
debt in terms of fixing technical quality issues and the extra cost spent on
maintenance. Specifically, they estimated the repayment effort by calculating
the rework fraction and rebuild value: the rework fraction represents the per-
centage of lines of code requiring modification to enhance software quality;
the rebuild value estimates the effort (in man-months) necessary to rebuild a
system using a particular technology.

Furthermore, two studies have empirically investigated the repayment ef-
fort of SATD. Mensah et al. (2018) analyzed SATD items to identify instances
of “vital few” (bug-prone) tasks and “trivial many” (less bug-prone) tasks.
They used the number of commented lines of code as a measure of effort es-
timation for SATD. The results indicated that highly prioritized (vital few)
SATD tasks required a rework effort of modifying 10 to 25 commented LOC
per source file. Wehaibi et al. (2016) explored whether SATD changes require
more effort to be repaid than non-SATD changes. They identified SATD and
non-SATD changes using 62 SATD keywords (Potdar and Shihab, 2014) from
five open-source projects, namely Chromium, Hadoop, Spark, Cassandra, and
Tomcat. They then compared the difficulty of SATD and non-SATD changes
using four measures: the total number of modified lines, the number of modi-
fied files, the number of modified directories, and change entropy. Their results
suggested that SATD changes were more challenging than non-SATD changes
across all four measures of difficulty.

Our study differs from the aforementioned studies on SATD repayment
effort in several aspects. First, we employ state-of-the-art machine learning
techniques to identify SATD items, as opposed to relying on the list of 62
SATD keywords from earlier work (Potdar and Shihab, 2014). Second, we
extract SATD-related changes corresponding to commits identified as SATD
items. Specifically, after employing machine learning techniques to pinpoint
commits with SATD items, we further analyze the related code changes to
measure the repayment effort involved. Third, we examine four distinct types
of SATD items, rather than treating them as a single, homogeneous group,
allowing for more nuanced insights into different types of SATD. Fourth, we
integrate a broader range of metrics to offer a more comprehensive assessment
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of repayment effort, enhancing our understanding of the SATD repayment.
Fifth, our analysis covers over 1,000 repositories, representing a significant
expansion compared to the five repositories investigated in previous studies.
Finally, and most notably, we introduce the first-ever approach for predict-
ing SATD repayment effort based on SATD textual information, as well as
identifying keywords associated with varying levels of repayment effort. This
innovative approach offers valuable insights and guidance for developers man-
aging SATD.

3 Study Design

The goal of this study, formulated according to the Goal-Question-Metric (van
Solingen et al., 2002) template is to “analyze source code and commit mes-
sages for the purpose of investigating the effort required to repay different
types of SATD and non-SATD items, automatically estimating this repayment
effort, and identifying keywords associated with varying levels of repayment
effort from the point of view of software engineers in the context of
open-source software.” This goal is refined into four research questions (RQs):

– RQ1: Are there differences in repayment effort between SATD and non-
SATD items?
Rationale: Previous study (Li et al., 2022b) has found that it generally
takes longer to resolve SATD items compared to non-SATD items; however,
it is unclear whether this is due to the more complex changes required for
SATD items or their lower priority. Understanding the differences in SATD
repayment compared to fixing non-SATD is crucial for comprehending why
it takes longer to repay SATD items and how best to address them. For ex-
ample, if we discover that SATD items require significantly more complex
changes than non-SATD items, this can increase awareness among devel-
opment teams that addressing SATD items may demand more resources
and effort than initially anticipated. As a result, organizations may opt to
allocate a larger budget or increase the number of developers tasked with
addressing SATD items, thereby promoting more efficient debt repayment.
Conversely, if SATD repayment is deemed too costly for rapid delivery,
organizations may choose to prioritize other tasks instead.

– RQ2: Are there differences in repayment effort among different types of
SATD items?
Rationale: SATD can be categorized into several types, such as code debt,
design debt, test debt, documentation debt, requirement debt, and archi-
tecture debt (Alves et al., 2014). Addressing different types of SATD may
entail varying degrees of complexity and challenges for software develop-
ers. For instance, resolving requirement debt could be more complex than
dealing with code debt. By investigating this research question, we aim
to understand the differences in repayment effort among various types of
SATD items. This insight can assist developers in prioritizing specific types
of SATD items throughout the software development process. For example,
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Fig. 1 The framework of our study.

if we determine that addressing code debt is less demanding than tackling
design debt, developers can prioritize code debt resolution, recognizing that
it will have a comparatively smaller impact on the development process.

– RQ3: Can we accurately predict the effort required for SATD repayment
based on the SATD text?
Rationale: Effectively prioritizing SATD items based on their repayment
effort can help developers allocate resources effectively. Nevertheless, esti-
mating the effort required for SATD repayment based on textual descrip-
tions remains a challenging task, and no approaches for this task currently
exist. To address this challenge, we explore the potential of machine learn-
ing techniques to predict the effort of the required code changes, based
on the textual content of SATD items. By investigating the effectiveness
of different approaches in this context, we aim to offer insights into the
feasibility of employing automated techniques for estimating SATD repay-
ment effort. This would enable practitioners to utilize these tools for better
SATD management and decision-making regarding which SATD items to
tackle first.

– RQ4: What keywords are associated with varying levels of repayment effort
when repaying SATD?
Rationale: Gaining an understanding of the specific keywords linked to
different levels of effort for repaying SATD items can offer valuable insights
into the complexity and difficulty associated with addressing SATD items.
Identifying such keywords might enable the creation of targeted guidelines
or best practices for addressing specific types of SATD items, which could
lead to more efficient prioritization and resource allocation in the software
development process. For example, such a guideline based on identified key-
words might recommend addressing low-effort SATD items during regular
development sprints or when developers have some spare time, as the pres-
ence of specific keywords may indicate low repayment effort. Additionally,
best practices could be developed to encourage developers to use clear and
accurate keywords when reporting SATD items, ensuring that the true
complexity and effort associated with addressing the technical debt are
well-understood and considered during the prioritization process.

To address our research questions, we use the approach outlined in Fig. 1.
First, we collect data in terms of commit messages and their corresponding
code changes from repositories. An example2 of a commit message along with

2 https://github.com/apache/ant/commit/ecf83d2

https://github.com/apache/ant/commit/ecf83d2
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its associated code changes is presented in Table 1. Next, we prepare data
to ensure consistency and eliminate irrelevant information. Subsequently, we
identify SATD items using the commit messages and analyze the repayment
effort based on the associated code changes. Finally, we train machine learning
models to answer our research questions. The subsequent subsections provide
detailed information about each of these steps.

Table 1 Example of commit messages and their corresponding code changes

Commit message: implement TODO of configurable buffer size.

@@ -131,6 +133,27 @@ public synchronized void waitFor()

+ /**

+ * Set the size in bytes of the read buffer.

+ * @param bufferSize the buffer size to use.

+ * @throws IllegalStateException if the StreamPumper is

+ * already running.

+ */

+ public synchronized void setBufferSize(int bufferSize) {
+ if (started) {
+ throw new IllegalStateException(

+ "Cannot set buffer size on a running StreamPumper");

+ }
+ this.bufferSize = bufferSize;

+ }

3.1 Collecting Data

To address our research questions, we focused on analyzing Apache Java
projects, owing to their high quality, widespread usage, mature community
support, and public availability for access and use. To gather the necessary
data, we obtained all available Apache Java repositories3 on Feb 1, 2023. Our
search resulted in a total of 1,060 Apache Java repositories, all of which were
included in our study. The collection process was carried out using an auto-
mated script to ensure consistency and accuracy in the selection of reposi-
tories. The script, along with the collected dataset, is made available in the
replication package1 to facilitate future research and validation of our findings.
The collected data includes all available commits and their associated commit
messages and code changes from each of the 1,060 Apache Java repositories.

3 https://github.com/orgs/apache/repositories

https://github.com/orgs/apache/repositories
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3.2 Preparing Data

The data collected from the 1,060 Apache repositories resulted in 2,568,728
commits. First, we removed merge and rollback commits from the dataset,
consistently with previous similar studies (Jiang et al., 2017; Liu et al., 2019),
as these commits do not provide new information and tend to be substantially
larger than other types of commits. Merge commits represent a point where
two branches of code are combined, while rollback commits are used to undo
changes made to a codebase. Next, we eliminated all commits containing non-
English characters, resulting in a dataset of 2,382,877 commits for subsequent
analysis.

3.3 Identifying SATD

To identify SATD items in commit messages, we employed a machine learning
model that was trained in our previous work (Li et al., 2023a). Their study
proposed a CNN and multitask learning approach to identify four types of
SATD, namely code/design debt, requirement debt, documentation debt, and
test debt, from four software artifacts with an average F1-score of 0.611. As
our study aims to identify SATD from commit messages, which is a software
artifact supported by the approach proposed by Li et al., we use their approach
to identify the different types of SATD items from commit messages.

3.4 Analyzing Repayment Effort

We then analyze the code changes linked to the commit messages which indi-
cate SATD to calculate the repayment effort of the SATD items. In this study,
we assess the repayment effort of SATD from two distinct perspectives: 1) the
effort required to address SATD items per se, and 2) the effort involved in
handling ripple effects of the SATD items on the rest of the system. These two
perspectives are essential to understanding the full implications of repaying
technical debt, as they capture both the direct and indirect consequences of
addressing SATD items. The first perspective has been the primary focus of
existing literature on SATD repayment (Mensah et al., 2018; Wehaibi et al.,
2016). The second perspective is equally important, as addressing technical
debt often results in unforeseen consequences on other parts of the software
(Brown et al., 2010). To capture these two aspects, we employ a comprehensive
set of nine different metrics, as detailed below:

1. Effort Required to Address SATD Items: Inspired by the work of
Wehaibi et al. (Wehaibi et al., 2016), we employ five metrics to provide
a quantitative assessment of the effort required to address SATD items.
These metrics include: 1) lines of code added (LA): the number of new lines
of code added during changes; 2) lines of code deleted (LD): the number
of lines of code removed during changes; 3) files added (FA): the number
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of new files created and added during changes; 4) files modified (FM): the
number of files changed; 5) files deleted (FD): the number of files removed
during changes. For instance, a high number of lines of code added typically
indicates a more complex or substantial change to the software system. We
employ JGit4 to analyze repositories and calculate these five metrics.

2. Effort Involved in Handling Ripple Effects: Drawing inspiration from
the work on the significance level of code changes by Fluri et al. (Fluri and
Gall, 2006; Fluri et al., 2007), we utilize four metrics to provide a quali-
tative assessment of the effort involved in managing ripple effects within
the system. The significance level expresses how strongly a change may
impact other source code entities (Fluri et al., 2007). To measure this,
we adopt the significance level classification tool5 provided by Fluri et al.
(Fluri and Gall, 2006; Fluri et al., 2007), which is based on tree edit op-
erations performed on the abstract syntax tree. These metrics include: 1)
low significance level code changes (LCC): the number of changes with a
low impact on the functionality or performance of the software system;
2) medium significance level code changes (MCC): the number of changes
with a moderate impact on the functionality or performance of the soft-
ware system; 3) high significance level code changes (HCC): the number
of changes with a significant impact on the functionality or performance
of the software system; 4) crucial significance level code changes (CCC):
the number of changes that are critical or essential to the functionality
or performance of the software system. For instance, code changes in a
method body are generally assigned LCC or MCC, while alterations to a
class interface are typically designated as HCC or CCC.

3.5 Training Machine Learning Models

3.5.1 Machine Learning Models and Baseline:

To predict the effort required for SATD repayment based on the SATD text
(RQ3), we select appropriate machine learning models. Although no exist-
ing approach specifically targets predicting the repayment effort of SATD,
TextCNN and BERT have demonstrated effectiveness in feature extraction
for SATD studies (Ren et al., 2019; Li et al., 2023a,b). Therefore, we choose
TextCNN and BERT as our primary machine learning models for predicting
the repayment effort of SATD. We evaluate their performance by comparing
them to several classic machine learning approaches and one naive baseline.
The methods used in this study are detailed below:

– TextCNN: TextCNN (Text Convolutional Neural Network) is an effective
text classification algorithm proposed by Kim (Kim, 2014). By employing
convolutional layers, TextCNN captures local features and patterns within

4 https://www.eclipse.org/jgit
5 https://bitbucket.org/sealuzh/tools-changedistiller

https://www.eclipse.org/jgit
https://bitbucket.org/sealuzh/tools-changedistiller


Title Suppressed Due to Excessive Length 11

text data. Its ability to efficiently learn discriminative features from text
has led to its adoption in numerous SATD identification studies (Ren et al.,
2019; Li et al., 2022a, 2023a). In this study, we use optimal hyperparame-
ters identified in previous work (Li et al., 2023a) to maximize model per-
formance. Specifically, we set the word-embedding dimension at 300, apply
filters with five different window sizes (1,2,3,4,5), and use 200 filters for
each window size.

– BERT: BERT (Bidirectional Encoder Representations from Transformers)
is a pre-trained transformer-based language model developed by Devlin
et al. (Devlin et al., 2018) that has shown state-of-the-art performance
in various natural language processing tasks, including text classification.
Given its success in capturing contextual information from text and its
proven effectiveness in handling complex language understanding tasks,
BERT is well-suited for predicting the repayment effort of SATD based
on textual information. In this study, we fine-tune BERT base models to
leverage their deep understanding of language and context to accurately
predict the repayment effort based on the SATD textual information.

– Classic Machine Learning Approaches (LR, RF, SVR): Since pre-
dicting repayment effort is a regression task, we compare deep learning
approaches with Linear Regression (LR) (Chatterjee and Hadi, 2006), Ran-
dom Forest (RF) (Ho, 1995), and Support Vector Regression (SVR) (Drucker
et al., 1996). The input data is vectorized using TF-IDF, and the models
are trained using Sklearn implementation with default settings.

– Naive Baseline: To provide a benchmark for the performance of our
models, we include a naive baseline. This baseline produces results by gen-
erating predictions according to the mean and standard deviation of the
training data set distribution.

We implement machine learning models using the PyTorch library and
train them on NVIDIA Tesla A100 GPUs. For evaluation, we split the dataset
into training, validation, and test sets, adhering to a standard 80/10/10 split.

3.5.2 Evaluation Metrics

In this study, we measure the performance of our machine learning models
using the Root Mean Square Error (RMSE) metric. RMSE is a widely adopted
metric in regression analysis, employed to assess the accuracy of predicted
values in comparison to the actual values. The RMSE is calculated by taking
the square root of the average of the squared differences between the predicted

and actual values:
√

1
n

∑n
i=1(actuali − predictedi)2, where n is the number of

data points, actuali is the actual value of the ith data point, and predictedi
is the predicted value of the ith data point. The lower the RMSE value, the
better the performance of the model, indicating a smaller gap between the
predicted and ground truth values.
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3.5.3 Keyword Extraction

To address RQ4, we employ a keyword extraction approach to identify key-
words associated with varying levels of repayment effort. This approach is
based on the work of Ren et al. (Ren et al., 2019), which uses the backtrack-
ing technique on TextCNN to extract n-gram keywords. First, we feed the
text data to the CNN model, and the most important features are selected
based on their weights. Next, the corresponding filters are located by back-
tracking the selected features. Finally, we locate the n-gram keywords in the
input text based on the filter position information. Specifically, we use the
CNN models trained in RQ3 to extract and summarize unigram to five-gram
SATD keywords.

4 Results

4.1 RQ1: Are there differences in repayment effort between SATD and
non-SATD items?

To evaluate the effort required for direct resolution of SATD, we present the
mean values of lines added (LA), lines deleted (LD), and total lines changed
in Table 2. The highest values are highlighted in bold, and the lowest values
are underlined for easier comparison. While the total lines changed for SATD
items are slightly greater than non-SATD items, a noticeable difference exists
in the lines added (LA) and lines deleted (LD) for SATD and non-SATD
items. Specifically, SATD changes have lower lines added (LA) and higher
lines deleted (LD) compared to non-SATD changes.

Table 2 The average number of lines added (LA) and deleted (LD).

Type LA LD Total

SATD 70.4 64.6 135.0

Non-SATD 88.0 41.1 129.1

For assessing the effort in direct resolution of SATD in terms of file changes,
we display the results for files added (FA), files deleted (FD), files modified
(FM), and the total number of files changed in Table 3. It can be observed
that the total number of files changed for SATD repayment is marginally lower

Table 3 The average number of files added (FA), deleted (FD), and modified (FM).

Type FA FD FM Total

SATD 0.35 0.34 3.65 4.34

Non-SATD 0.61 0.21 3.74 4.56



Title Suppressed Due to Excessive Length 13

than non-SATD changes. Furthermore, the results show that SATD changes
have a lower number of files added (FA) and a higher number of files deleted
(FD) compared to non-SATD changes, while the differences in files modified
(FM) are relatively minor.

To evaluate the effort involved in handling ripple effects, Table 4 presents
the mean values of low (LCC), medium (MCC), high (HCC), and crucial
(CCC) significance level code changes. The results reveal a significantly higher
number of code changes across all significance levels for SATD repayment
compared to non-SATD changes. Notably, SATD repayment changes involve
a substantially higher number of medium-significance code changes (MCC)
compared to non-SATD changes. Our statistical analysis confirms that the
differences between SATD and non-SATD changes are statistically significant
with respect to LA, LD, FA, FD, FM, and different levels of code changes, with
a p-value less than 0.05, using the Mann-Whitney test (Mann and Whitney,
1947).

Table 4 The average number of low (LCC), medium (MCC), high (HCC), and crucial
(CCC) significance level code changes.

Type LCC MCC HCC CCC Total

SATD 6.28 4.34 0.67 0.77 12.06

Non-SATD 5.41 2.98 0.39 0.49 9.27

Although SATD and non-SATD items require similar levels of effort for
direct resolution, SATD items demand higher effort in managing the as-
sociated ripple effects.

4.2 RQ2: Are there differences in repayment effort among different types of
SATD items?

We assess the direct resolution effort for various SATD types by presenting the
mean values of lines added (LA), lines deleted (LD), and total lines changed
for each SATD type and non-SATD items in Table 5. Documentation debt
changes demonstrate significantly lower levels of lines added (LA) and lines
deleted (LD) compared to non-SATD changes. In contrast, requirement and
test debt SATD changes exhibit a substantial increase in the number of lines
added (LA) compared to non-SATD changes. Code/design debt changes show
a lower number of lines added (LA) and a higher number of lines deleted (LD)
compared to non-SATD changes.

Table 6 summarizes the results of files added (FA), files deleted (FD),
files modified (FM), and the total number of files changed for each SATD
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Table 5 The average number of lines added (LA) and deleted (LD).

Type LA LD Total

Code/Design Debt 70.4 74.8 145.2

Documentation Debt 51.8 25.8 77.6

Requirement Debt 126.0 47.7 173.7

Test Debt 116.0 47.6 163.6

Non-SATD 88.0 41.1 129.1

type and non-SATD items, further assessing the direct resolution effort. We
can observe that documentation debt changes result in significantly fewer file
updates, whereas changes associated with requirement and test debt lead to
a substantial increase in the number of files added compared to non-SATD
changes; this is similar to the results in Table 5. Moreover, we observe a similar
trend for code/design debt changes, with fewer files added (FA) and more files
deleted (FD) than non-SATD changes. Interestingly, our findings indicate that
test debt changes have the least number of files modified (FM) compared to
other types of SATD and non-SATD changes.

Table 6 The average number of files added (FA), deleted (FD), and modified (FM).

Type FA FD FM Total

Code/Design Debt 0.34 0.41 3.86 4.61

Documentation Debt 0.24 0.10 3.02 3.36

Requirement Debt 0.83 0.19 3.28 4.30

Test Debt 0.83 0.24 2.43 3.50

Non-SATD 0.61 0.21 3.74 4.56

To evaluate the effort involved in handling ripple effects, Table 7 sum-
marizes the number of code changes of low (LCC), medium (MCC), high
(HCC), and crucial (CCC) significance levels, for each type of SATD and
non-SATD changes. As we can see, documentation debt changes result in the
lowest number of code changes across different significance levels. In contrast,
SATD changes associated with requirement debt exhibit the highest number
of code changes across all significance levels, significantly exceeding non-SATD
changes. Code/design and test debt changes display a similar trend, follow-
ing requirement debt in terms of the number of code changes across different
significance levels, which are also significantly higher than non-SATD changes.

Various types of SATD items demonstrate distinct levels of repayment
effort. Documentation debt presents the lowest repayment effort, which
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Table 7 The average number of low (LCC), medium (MCC), high (HCC), and crucial
(CCC) significance level code changes.

Type LCC MCC HCC CCC Total

Code/Design Debt 7.19 5.13 0.79 0.92 14.03

Documentation Debt 1.28 0.66 0.14 0.12 2.20

Requirement Debt 9.76 5.83 0.87 1.02 17.48

Test Debt 8.51 4.08 0.49 0.56 13.64

Non-SATD 5.41 2.98 0.39 0.49 9.27

is even lower than that of non-SATD items, while requirement debt leads
to the highest repayment effort among all SATD types.

4.3 RQ3: Can we accurately predict the effort required for SATD repayment
based on the SATD text?

To assess the efficacy of various machine learning approaches in predicting the
required code changes to repay SATD, we compared two deep learning meth-
ods (i.e., BERT and TextCNN) and three classical machine learning methods
(i.e., RF, LR, and SVR) against a baseline approach (i.e., naive). Due to the
substantial variability in the predicted values, we applied a log transformation
to the target variable and standardized the target. This transformation pro-
duced a more normal distribution, which subsequently improved the learning
capabilities of the evaluated machine learning models.

Table 8 Comparison of RMSE performance: machine learning models versus baseline ap-
proach for predicting lines added (LA), lines deleted (LD), and total lines of code changed
(LT).

Approach LA LD LT Avg. IOB

BERT 0.58 0.63 0.61 0.61 56.7%

TextCNN 0.59 0.65 0.62 0.62 56.0%

RF 0.85 0.91 0.84 0.87 38.3%

LR 1.04 1.10 1.06 1.07 24.1%

SVR 0.71 0.76 0.75 0.74 47.5%

Naive 1.41 1.41 1.41 1.41 -

The results presented in Table 8 provide a comprehensive comparison of
different approaches in predicting the lines added (LA), lines deleted (LD), and
total lines changed (LT) required for SATD repayment based on the SATD
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text. The Improvements over Baseline (IOB) are also provided in the table.
It is noted that the best results are highlighted in bold. As shown in Table
8, the BERT-based approach achieves the lowest RMSE values for LA (0.58),
LD (0.63), and LT (0.61), with an average RMSE of 0.61, closely followed by
TextCNN with an average RMSE of 0.62. The BERT-based approach yields a
56.7% improvement over the baseline method. Furthermore, the average RMSE
scores obtained by the classical machine learning approaches range from 0.74
to 1.07, which are significantly lower than the naive baseline (1.41) but higher
than the BERT approach.

Table 9 Comparison of RMSE performance: machine learning models versus baseline ap-
proach for predicting files added (FA), deleted (FD), modified files (FM), and the total
number of files affected (FT).

Approach FA FD FM FT Avg. IOB

BERT 0.70 0.69 0.69 0.68 0.69 50.7%

TextCNN 0.70 0.69 0.70 0.69 0.70 50.4%

RF 0.91 0.90 0.94 0.94 0.92 33.3%

LR 1.19 1.23 1.17 1.16 1.18 15.9%

SVR 0.83 0.84 0.80 0.79 0.81 42.2%

Naive 1.41 1.41 1.41 1.41 1.41 -

We also predicted the number of files that need to be added (FA), deleted
(FD), and modified (FM), as well as the total number of affected files (FT).
The RMSE of the different approaches is displayed in Table 9. The deep learn-
ing approach (BERT) consistently demonstrates the lowest RMSE across all
predicted values, with values of 0.70 for FA, 0.69 for FD, 0.69 for FM, and
0.68 for FT, resulting in an average RMSE of 0.69. This performance signifies
a 50.7% improvement over the baseline method. Similarly, the performance
of TextCNN is slightly worse than BERT (0.70 vs 0.69). Moreover, the aver-
age RMSE scores obtained by the classical machine learning approaches range
from 0.81 to 0.92, which are substantially lower than the naive baseline.

In addition to predicting the changed lines of code and number of files
required to repay SATD, we investigated the application of machine learning
approaches to predict the number of code changes of the various significance
levels, based on the SATD text. Table 10 presents the RMSE performance
of the approaches in predicting different significance levels of code changes
required for SATD repayment. As shown in Table 10, TextCNN achieved the
best performance in predicting different significance levels of code changes,
with an average RMSE of 0.67, constituting a 51.7% improvement over the
baseline approach. Specifically, the model exhibits the best performance in
predicting LCC with an RMSE of 0.62, MCC with an RMSE of 0.72, HCC
with an RMSE of 0.67, and CCC with an RMSE of 0.71. Notably, the BERT-
based approach is surpassed by TextCNN in this task by a small margin.
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Table 10 Comparison of RMSE performance: machine learning models versus baseline
approach for predicting different levels of code changes.

Approach LCC MCC HCC CCC Avg. IOB

BERT 0.60 0.68 0.74 0.72 0.69 51.0%

TextCNN 0.62 0.72 0.67 0.71 0.67 51.7%

RF 0.91 0.92 0.94 0.93 0.92 34.3%

LR 1.06 1.10 1.17 1.15 1.12 20.5%

SVR 0.73 0.74 0.82 0.79 0.77 45.3%

Naive 1.41 1.41 1.41 1.41 1.41 -

Additionally, the three classical machine learning models exhibit better RMSE
performance than the baseline approach, with values ranging from 0.77 to 1.12.

Machine learning approaches, specifically the BERT and TextCNN, can be
effective in predicting the effort required for SATD repayment
based on the SATD text, outperforming the naive baseline by a large mar-
gin.

4.4 RQ4: What keywords are associated with varying levels of repayment
effort when repaying SATD?

We begin by summarizing the keywords linked to the effort required for ad-
dressing SATD items. Using the deconvolution technique (refer to Section 3.5.3),
we identify and present the top keywords associated with low and high lines of
code changed (including LA and LD) as well as low and high numbers of files
changed (including FA, FD, and FM) in Table 11. Unique keywords are high-
lighted in bold. Our analysis reveals that when the lines of code and number
of files modified are low, the keywords generally relate to typos, error message
updates, warning message updates, or code comments. We also observe that
SATD items involving unused imports, logging, workarounds, or debugging
consistently require low repayment effort, measured in terms of lines of code
and number of files. In contrast, SATD items related to code cleanup (e.g., code
cleanup, formatting, and rename), tests, documentation (e.g., documentation
and license header), and requirements (e.g., work in progress, improvement,
and support for) generally demand more lines of code to repay. Interestingly,
keywords for high numbers of files modified differ from those for high lines of
code. While keywords related to high numbers of files modified also pertain to
code cleanup (e.g., code cleanup, naming, and tidy up), they involve changes
to interfaces and classes as well (e.g., interface, class, and extension point).

To summarize keywords connected to the effort in handling ripple effects,
we provide an overview of the keywords identified for code changes with vary-
ing levels of significance (i.e., low, medium, high, and crucial) during SATD
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Table 11 Top keywords associated with low or high levels of SATD repayment effort with
respect to the number of lines of code modified and the number of files modified.

Low # Lines High # Lines Low # Files High # Files

typo code cleanup typo header

unused import formatting unused import interface

error message more tests comment code cleanup

comment documentation warning annotation

logging work in progress debug naming

javadoc improvement workaround class

minor rename proper tidy up

update support for variable files

debug header error message extension point

Table 12 Top keywords that are associated with varying levels of significant changes for
repaying SATD.

LCC MCC HCC CCC

logging handling unused code unused code

exception logging interface interface

handling simplify API refactoring

test logic implementation API

output catch code cleanup support

cast output refactoring deprecated code

simplify code cleanup support implementation

findbugs leak checkstyle errors constructor

leak implementation redundant endpoints

repayment. Table 12 provides a comprehensive overview of our findings, with
unique keywords (exclusive to one significance level) highlighted in bold for
easy reference. The keywords show that changes with low or medium signif-
icance levels primarily focus on exception handling, logging, tests, logic im-
provement, and fixing leak issues. On the other hand, changes with high or
crucial significance levels predominantly involve cleaning up unused code, mod-
ifying interfaces, refactoring code, and implementing new requirements. Some
keywords are shared between different levels of significance, as certain tasks in
software development are fundamental and ubiquitous across all complexity
levels.

Different types of SATD repayment efforts are associated with distinct key-
words. Low-effort repayments typically involve typos, error messages,
and code comments, while high-effort repayments often require code
cleanup, modifying interfaces, and implementing requirements.
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5 Discussion

5.1 Repayment Effort in SATD and Non-SATD Changes

Our findings show that SATD repayment changes involve a marginally greater
number of total lines changed compared to non-SATD changes, while display-
ing a slightly lower total number of files changed. These results contradict the
prior study by Wehaibi et al. (Wehaibi et al., 2016), which suggested that
SATD changes have significantly higher values in terms of both the total num-
ber of lines and files changed. One possible explanation for this discrepancy
is that the previous study employed 62 SATD keywords (Potdar and Shihab,
2014), which might have identified more severe and error-prone SATD items.
Another potential factor is the difference in SATD identification methods:
our study identifies SATD from commit messages, while the previous study
(Wehaibi et al., 2016) used code comments, possibly leading to contrasting re-
sults. We recommend that future research further examines the disparities in
repayment effort between SATD and non-SATD items to gain a deeper under-
standing of the factors influencing these differences. Comparisons of various
SATD identification techniques and the severity levels of the identified items
could offer valuable insights into the causes of these discrepancies.

Furthermore, we observed significant differences in the lines added (LA)
and lines deleted (LD) between the two types of changes. In particular, SATD
repayment changes involve fewer lines added (LA) and more lines deleted (LD)
compared to non-SATD changes. This pattern extends to files, with SATD
changes showing a lower number of files added (FA) and a higher number of
files deleted (FD) compared to non-SATD changes. A possible explanation for
these differences is that non-SATD changes are more likely to involve feature
implementation, which typically adds more lines and files while deleting fewer.
In contrast, SATD repayment changes may involve more refactoring, which
requires modifying and deleting lines of code and files rather than adding new
ones.

Regarding the significance level of code changes, our findings demonstrate
that SATD repayment changes involve a substantially higher number of code
changes across various significance levels compared to non-SATD, suggesting
that repaying SATD creates more ripple effects. This indicates that addressing
SATD may require more extensive and diverse code modifications, impacting
multiple aspects of the codebase. A possible explanation for this observation is
that SATD items may be more deeply embedded within the code, necessitating
a greater degree of intervention to resolve. For practitioners, this emphasizes
the importance of early detection and resolution of SATD items in order to
minimize the impact of these ripple effects and maintain code quality.
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5.2 Repayment Effort among Different Types of SATD Items

Our analysis of various types of SATD items uncovers significant differences in
repayment effort among them. Repaying documentation debt shows the lowest
levels of lines added (LA) and lines deleted (LD) compared to other SATD and
non-SATD changes. This finding implies that repaying documentation debt
might be less effort-intensive, as it often requires updating comments and doc-
umentation without substantially altering the codebase. On the other hand,
SATD repayment related to requirement and test debt display a significant
increase in the number of lines of code added (LA) compared to non-SATD
changes. This observation suggests that repaying requirement and test debt
may involve more extensive codebase modifications, as developers need to im-
plement new features or enhance existing ones to meet evolving requirements
and ensure sufficient test coverage. For code/design debt changes, our results
indicate that they exhibit a lower number of lines added (LA) and a higher
number of lines deleted (LD) compared to non-SATD changes. This pattern
suggests that addressing code/design debt may involve increased refactoring
and optimization effort, as developers focus on improving code structure and
eliminating unnecessary or problematic code elements.

Considering the variations in repayment effort among distinct types of
SATD, we advise researchers and practitioners to treat each SATD type dis-
tinctly rather than considering SATD as a monolithic entity. Resolving docu-
mentation debt may require less effort, while addressing requirement debt may
demand more repayment effort. This tailored approach enables a nuanced un-
derstanding of specific challenges and requirements associated with each SATD
type, leading to more effective management strategies. Previous research pri-
marily focused on examining SATD as a whole (Sierra et al., 2019), resulting
in limited attention to individual types. By considering different SATD types,
researchers and practitioners can better understand, prioritize, and develop
more effective strategies to address each type. Consequently, it is crucial to
devise approaches for supporting other SATD types, such as architecture or
build debt, which are difficult to detect automatically. A detailed understand-
ing of repayment efforts for various SATD types allows researchers to create
advanced tools to support SATD management.

5.3 Predicting SATD Repayment Effort Based on SATD Text

Our evaluation of machine learning approaches for predicting the effort re-
quired for SATD repayment based on SATD text reveals that the deep learning
methods (BERT and TextCNN) outperform classical machine learning meth-
ods regarding RMSE performance. The superior performance of deep learning
methods can be attributed to their ability to capture complex patterns and
relationships within the SATD text, enabling more accurate predictions of re-
payment effort. These results highlight the potential of using machine learning
approaches, especially deep learning methods, to assist developers in estimat-
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ing the effort necessary to repay SATD. By understanding the estimated re-
payment effort for each SATD item, software developers and project managers
can make informed decisions about how to allocate team resources effectively.

However, it is important to note that the performance of the models in
predicting the effort required for SATD repayment is not perfect, and there is
room for improvement (further decreasing the RMSE). Additionally, our work
predicts SATD repayment effort based on SATD text in commit messages, and
it remains uncertain whether the trained machine learning approach can be
applied to predict repayment effort using SATD documented in other sources,
such as code comments. Consequently, we encourage researchers to explore
the applicability of the proposed machine learning approach for predicting
SATD repayment effort across different types of SATD documentation sources,
including code comments, issue trackers, and pull requests. Researchers could
also investigate the possibility of combining multiple SATD documentation
sources to enhance the accuracy and reliability of repayment effort prediction.
Moreover, future research can examine how incorporating human expertise
and domain knowledge can complement machine learning models for predicting
SATD repayment effort. This might involve developing hybrid approaches that
integrate automated techniques with expert judgment to yield more accurate
and actionable insights for managing technical debt.

5.4 Keywords Associated With Varying Levels of Repayment Effort

We summarized the top keywords associated with different levels of repayment
effort in Section 4.4. The primary advantage of using these keywords lies in
their interpretability and ease of use. By closely monitoring the presence of
these keywords, developers can gain a quick understanding of the potential
repayment effort associated with the respective SATD items. This awareness
can help facilitate the identification and prioritization of SATD items to be
addressed, especially in cases where the deep learning model predictions are
unavailable. Moreover, integrating these keywords into automated tools can
further enhance the support provided to software developers in prioritizing
SATD. By highlighting the keywords in SATD items, such tools can help
developers better estimate the repayment effort of SATD items, enabling them
to make more informed decisions when addressing technical debt. Combining
the deep learning model’s predictions with keyword-based insights provides a
comprehensive understanding of the repayment effort associated with various
SATD items.

6 Threats to Validity

In this section, we discuss the potential threats to the validity of our study,
focusing on construct validity, reliability, and external validity.
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6.1 Threats to Construct Validity

In our study, we used lines of code, files changed, and significance levels of code
changes as proxies to measure repayment effort. These metrics may not capture
all aspects of the effort involved in SATD repayment. We partially mitigated
this threat by employing widely-accepted metrics to quantify the repayment
effort. Additionally, there is a possibility that the approach used to identify
SATD items may not capture all types of SATD, which may impact the results
of our study. Indeed, we used a machine learning model trained on commit
messages to identify SATD items, and it may miss some SATD types that are
not typically described in commit messages. We mitigated this threat, at least
partially, by using a well-established model from previous research, which has
demonstrated high accuracy in identifying various types of SATD.

6.2 Threats to Reliability

Reliability refers to the consistency and stability of the results obtained across
different instances of the study. In our research, we employed various machine
learning models, which inherently possess some level of randomness due to
their training process. To mitigate this threat, we reported the average per-
formance across multiple runs of the models. Moreover, we made our collected
dataset publicly available in the replication package1, allowing for replication
and verification of the results.

6.3 Threats to External Validity

External validity is concerned with the generalizability of our findings to other
contexts or populations. Our study focused on a specific dataset containing
Java open-source projects. Although these projects vary in size and complexity,
they might not be representative of all types of software projects. Moreover,
the generalizability of our findings to other programming languages and do-
mains remains uncertain. To improve external validity, future studies should
consider investigating SATD repayment effort in different languages, domains,
and project types, as well as incorporating more diverse sources of data, such
as issue trackers and code review comments.

7 Conclusion

In this study, we investigated the effort required to repay SATD items and
non-SATD changes. Our research aimed to provide a better understanding
of the differences in repayment effort between SATD and non-SATD items,
the variations among different types of SATD items, the feasibility of predict-
ing repayment effort based on the textual content of SATD items, and the
keywords that are associated with different levels of repayment effort.
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