
Exploring Web Search Engines to Find
Architectural Knowledge

Mohamed Soliman∗, Marion Wiese†, Yikun Li∗, Matthias Riebisch†, and Paris Avgeriou∗
∗ Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

University of Groningen, Groningen, The Netherlands
{m.a.m.soliman, yikun.li, p.avgeriou}@rug.nl

†Department of Informatics, Universität Hamburg, Germany
Email: {wiese, riebisch}@informatik.uni-hamburg.de

Abstract—Software engineers need relevant and up-to-date
architectural knowledge (AK), in order to make well-founded
design decisions. However, finding such AK is quite challenging.
One pragmatic approach is to search for AK on the web using
traditional search engines (e.g. Google); this is common practice
among software engineers. Still, we know very little about what
AK is retrieved, from where, and how useful it is. In this
paper, we conduct an empirical study with 53 software engineers,
who used Google to make design decisions using the Attribute-
Driven-Design method. Based on how the subjects assessed the
nature and relevance of the retrieved results, we determined how
effective web search engines are to find relevant architectural
information. Moreover, we identified the different sources of AK
on the web and their associated AK concepts.

Index Terms—Architecture knowledge Architecture design de-
cisions Search engines

I. INTRODUCTION

Architectural knowledge (AK) is crucial for software engi-
neers to make architectural design decisions [1]. For instance,
knowledge about technologies or architectural patterns, includ-
ing their benefits and drawbacks, is important to select an
architectural solution for a design problem. However, finding
architectural knowledge (AK) is a challenging task [2] for a
number of reasons. First, AK resides in multiple heterogeneous
AK sources, such as technology documentation [2], issue
tracking systems [3], and developer communities (e.g. Stack
Overflow) [4]. Thus there is no single source of AK that
contains all required AK.

Second, each source of AK contains different AK concepts
(e.g. design decisions, solution alternatives [5], or the benefits
and drawbacks of architectural solutions [4]). For instance,
developer communities contain predominantly general AK
concepts [6], such as the benefits and drawbacks of architec-
tural solutions [7]. In contrast, issue tracking systems contain
mainly design and reasoning AK concepts [6], such as design
decisions of existing systems [3]. Thus, depending on the AK
concept, one may need to look into a different AK source.

Third, all AK sources are characterized by a fast pace of
change, and accelerating technology churn [8]. This makes

This work was supported by ITEA3 and RVO under grant agreement No.
17038 VISDOM (https://visdom-project.github.io/website).

it even harder for software engineers to find and analyze
information within the different sources of AK.

One approach to facilitate finding AK is to manually cap-
ture AK (i.e. search for AK, and codify it) from multiple
sources, and subsequently structure and store it in a repos-
itory (e.g. [9]). This supports software engineers to directly
find relevant AK concepts, without navigating through many
sources of AK depending on the concept. However, manually
capturing AK requires significant efforts to gather and keep
knowledge up to date; this makes it an expensive means in
industrial practice [10].

A more pragmatic way to search for AK from different
sources is to use web search engines (e.g. Google). Web search
engines are commonly used by software engineers in their
daily business to find technical solutions for problems [11].
Moreover, web search engines can provide access to multiple
AK concepts, such as design decisions from an existing
system (e.g. within open source systems [3]), as well as
descriptions of architectural solutions (e.g. within technology
documentation [2]). It is even possible to use web search
engines to populate AK repositories [2].

While web search engines can provide support to find AK,
recent experiences show that web search engines return many
irrelevant results when searching for AK [2]. In fact, there
is little to no empirical evidence about: a) which AK sources
and AK concepts can actually be found by web search engines;
and b) when and how web search engines can be helpful for
practitioners.

Our main goal in this paper is to explore which AK sources
and AK concepts are retrieved by web search engines, and to
gauge the effectiveness of web search engines to find relevant
AK during the architectural design process. To this end, we
conducted an empirical study with 53 software engineers with
different levels of experience. The subjects used the most
popular web search engine (i.e. Google) to find relevant AK
concepts when conducting the steps of the Attribute-Driven
Design (ADD) method [12]; ADD was chosen as it is one of
the most popular architectural design processes in literature.
The study results in the following contributions:
• We empirically identified AK sources, that web search

engines are able to find. Moreover, we associated each

AK source with the AK concepts they contain, based on
the perspective of software engineers. Furthermore, we
determined possible correlations between AK concepts.

• We created a corpus of empirically classified and evalu-
ated web pages and their respective AK sources and AK
concepts.

• We measured and compared the effectiveness of web
search engines to support software engineers during the
execution of the ADD steps. Moreover, we determined the
most relevant AK sources for each ADD step according
to the evaluation of software engineers.

• We identified the AK concepts that make web pages
highly relevant for software engineers when making de-
sign decisions.

The rest of the paper is structured as follows: Section II
provides a background on the ADD steps, while Section III
presents the research questions and study design. Sections
IV, V, VI and VII present the results per research question,
Section VIII discusses our results and their implications to
practitioners and researchers, and Section IX discusses threats
to validity. Finally, Section X discusses some related work,
and Section XI concludes the paper.

II. ATTRIBUTE DRIVEN DESIGN STEPS

Kazman et al. [12] proposed a number of iterative steps
within ADD to make architectural decisions. For the purposes
of our study, we select three of these steps, which are the
most information-intensive [13]: they require searching for
architectural information to be conducted. We explain these
three steps and the type of information that software engineers
need to perform them.

Identify design concepts: In this step, alternative architec-
tural solutions are identified for a design issue. For example,
a software engineer might look for alternative broker tech-
nologies, which might fulfill system requirements and align
with the system constraints. As an example, these alternative
solutions for broker technologies could be RabbitMQ, Kafka
and ActiveMQ. To perform this step, software engineers
need to search for information regarding alternative solution
options.

Select design concepts: In this step, one architectural so-
lution is selected from a list of alternative solutions (from
the previous step). This is done by comparing alternative
solutions with each other regarding their ability to fulfill
functional requirements and quality attributes. For example,
RabbitMQ, Kafka and ActiveMQ are compared regarding
performance and reliability to decide on the most suitable
broker technology. To perform this step, software engineers
need to search for benefits and drawbacks of the alternative
options, e.g. information about performance benchmarks and
reliability features for each of the alternative solutions.

Instantiate architecture elements: In this step, the selected
architectural solution (from the previous step) is customized
to match the system requirements. For instance, to achieve
high availability, replication tactics need to be implemented.
This is done by configuring the selected broker technology

(e.g. Kafka) to add a specific number of replicated instances.
To perform this step, software engineers need to search for
information and experiences regarding technology features,
and their abilities to implement architectural tactics [12].

III. STUDY DESIGN

A. Research questions

To achieve our goal (see Section I), we ask the following
research questions (RQs):
(RQ1) Which AK can web search engines support to find?
• (RQ1.1) Which AK sources can web search engines find?
• (RQ1.2) Which AK concepts are prominent within the

found AK sources?
As discussed in Section I, researchers have explored mul-

tiple different AK sources and their AK concepts. However,
there is no comprehensive list of AK sources and AK concepts
on the web. Thus, we ask RQ1.1 to determine possible sources
of AK that exist on the web. Answering RQ1.1 can confirm
the AK sources that are already known but it can also reveal
new AK sources, which have not been previously explored.
Moreover, we ask RQ1.2 to determine the AK concepts, which
commonly appear in each of the found AK sources.
(RQ2) Which AK concepts co-occur on the web?

We ask RQ2 to determine possible relationships between
AK concepts on the web. Answering RQ2 can help us de-
termine if AK concepts appear together on the web similarly
to their conceptual relationships in AK ontologies (e.g. archi-
tectural solutions have benefits and drawbacks [4]). This can
support assessing whether the relations between concepts in
existing AK ontologies are reflected on the AK found in the
web.
(RQ3) How well do web search engines support software
engineers in following the ADD steps?
• (RQ3.1) How effective are web search engines to find AK

needed for performing the ADD steps?
• (RQ3.2) Which AK sources have the biggest contribution

on the effectiveness of web search engines for each of the
ADD steps?

Within each step of the ADD (see Section II), software
engineers need to search for different types of architectural
information. We ask RQ3.1 to quantitatively measure the effec-
tiveness of web search engines to find relevant architectural in-
formation, and to determine how much web search engines can
support software engineers during the different architectural
design steps. Moreover, we ask RQ3.2 to determine the most
useful sources of AK for each ADD step. Answering RQ3.2
can support prioritizing and directing our future research
efforts to explore and capture AK, by focusing on certain AK
sources, that yield the highest benefit to software engineers.
(RQ4) Which AK concepts make web pages more relevant for
design decisions?

When using web search engines to perform architectural
design tasks, some AK concepts may increase the relevance of
the corresponding web pages. We ask RQ4 to determine which
AK concepts indeed can make a web page more relevant for

TABLE I: Industrial experience of participants
Software development Software architecture

Years # Participants # Years # Participants
>10 Years 4 >5 Years 5
3-10 Years 13 2-5 Years 9
<3 Years 36 <1 Year 39

specific architectural tasks than others. Answering RQ4 could
provide guidance on which AK is worth sharing on the web.

B. Overview on the research process

To answer the RQs, we conducted an exploratory case study
[14] with 53 software engineers (see Section III-C) who used
the most popular web search engine (i.e. Google) to perform
the ADD steps (see Section II). The conducted case study is
an embedded case study, where the ADD steps constitute our
case and the executed search queries from the 53 software
engineers are the units of analysis.

To collect data, we asked the 53 software engineers to solve
six architectural design searching tasks (see Section III-D)
using Google, where each searching task performs one of the
three ADD steps [12], as explained in Section II. For each
searching task, the participants executed multiple queries in
Google, and assessed the resulted web pages regarding two
aspects: 1) The relevance of each web page to the searching
task, and 2) The AK concepts which exist in each web page.
Further details are presented in Section III-E.

To analyze the collected data, and answer the RQs, we used
the following analysis methods:
• Web pages classification: To answer RQ1.1, RQ1.2 and

RQ3.2, we classified collected web pages (retrieved by
Google for each query) into their respective AK source
using a semi-automated approach (see Section III-F).

• Descriptive statistics and correlations: To answer RQ1.2,
RQ2 and RQ 3, we used descriptive statistics and evalu-
ated correlations between AK sources, AK concepts and
relevance of web pages using Pearson χ̃2 test [15] (see
Section III-H).

• Effectiveness measurement: To answer RQ3.1 and RQ3.2,
we measured the effectiveness of Google using standard
information retrieval metrics (see Section III-G).

C. Participants of the case study

The participants of the case study are 53 software engineers.
50 of the participants attended a software architecture master
course at the University of Hamburg, and 3 additional software
engineers volunteered to participate in the study. An overview
on the industrial experience of the participants is presented
in Table I. Additional information regarding the technical
background of the participants is available online1.

D. Searching tasks

To answer the RQs, each participant (see Section III-C)
solved three searching tasks, where each task corresponds to
one of the three ADD steps (see Section II).

1github.com/m-a-m-s/ICSA2021

TABLE II: Architectural searching tasks
ADD step ID Task description
Identify design
concepts

T1 For a realtime dashboard, identify middleware
technologies which scale to >100k users

T2 A system needs to communicate with mobile apps.
Identify JSON parsers for Java with high perfor-
mance, considering license constraints.

Select design
concepts

T3 A system communicates with a knowledge base
via publish/subscribe patterns. Compare interop-
erability and latency of RabbitMQ, Kafka, and
ActiveMQ.

T4 Compare three technology families for big data
systems: data collector, message brokers, and ETL
engines. Requirements are throughput of 15,000
events/sec and availability of 99.99%.

Instantiate ar-
chitecture ele-
ments

T5 CRM apps communicate with other systems using
Apache Camel and RabbitMQ. Search for technol-
ogy features and components designs to determine
mechanisms channeling, translation and routing,
and deployment topology.

T6 An application exposes services to other apps.
Search for best practices regarding service decom-
position to achieve high cohesion and low coupling.

To support the validity of our results, we have designed
two searching tasks for each ADD step. Thus, we have in
total six tasks, from which we have randomly assigned three
tasks (one task per ADD step) to each participant. The six
searching tasks are real design problems, which have been
gathered based on interviews with practitioners in a previous
study [16] within the field of architectural knowledge. Table
II presents a brief description of the six searching tasks, and
their relationship to the ADD steps. A complete description
of each task is available online1.

E. Case Study procedures

1) Preparations before the study: To support the validity
of our results, it is important to ensure that the participants
have a clear understanding about the procedures of the study,
as well as the searching tasks, and AK concepts. Therefore,
the authors met with the participants in two sessions and
explained the study procedures, as well as the assessment
of web pages regarding their relevance and AK concepts.
After the first session, each participant received a user-guide
(available online1) with details about the study and a video
tutorial on how to perform the tasks during the study. At the
beginning of the second session and before conducting the
study, the authors made a demo on assessing the relevance
and specifying AK concepts for an example web page. In this
demo, the participants were asked to specify the relevance
and AK concepts for this example web page and provide their
input via a polling feature in a web-conferencing tool. The
polling results were discussed with the participants to show
them how to correctly assess the relevance and how to specify
AK concepts for each web page e.g. by paying particular
attention to the requirements and constraints of the tasks.

We provide below the definitions for the degrees of rel-
evance, that participants could choose from (in a five-level
Likert scale):
• Very High Relevance (VH): The web page discusses a

similar problem to that of the task and contains useful

information. The web page provides an answer to the
searching goal, and helps with fulfilling more than one
requirement of the task.

• High Relevance (H): The web page addresses a similar
problem to that of the task and contains useful informa-
tion. The web page provides an answer to the searching
goal, and helps with fulfilling one requirement of the task.

• Medium Relevance (M): The web page addresses a dif-
ferent problem to that of to the task at hand, but it
provides some relevant information to the task, which
could be an answer to the searching goal. Nevertheless,
the provided information does not match specifically the
task’s requirements.

• Low Relevance (L): The web page contains information,
which is only remotely relevant to solving the given task,
but might help for refining the search.

• No Relevance (N): The web page has nothing to do with
the task. It has no relevant information.

Moreover, each participant specified certain AK concepts
for each web page. The list of AK concepts has been derived
from existing literature [4], [17], [18] and is as follows:

• Solution description: general information on an architec-
tural solution.

• Solution alternatives: multiple (alternative) architectural
options for a certain design issue. The architectural op-
tions could be listed in the text or as a comparison of
different options.

• Solutions benefits: information about the advantages of
certain architectural solutions.

• Solutions drawbacks: information about the disadvan-
tages of certain architectural solutions, even discouraging
their application.

• Made design decisions: explanation about the architecture
of a specific system. This includes the description of an
existing architectural design of a specific system, or the
explanation about certain design decisions of a specific
system.

• Others: other relevant architectural information.

2) Study execution: We asked the participants to perform
the tasks in the order given to them. To ensure that the
sequence of tasks does not influence the study, we provided
each participant with a different sequence of tasks (available
online1). Moreover, we asked each participant to perform at
least three queries per task and to evaluate the top 10 Google
results for each query, as most users do not assess more than
the top 10 results on the first page.

To facilitate specifying the relevance and AK concepts
for each web page, we developed a Google Chrome plugin
(provided online1), which offers a user interface and stores
submitted relevance and AK concepts in a database.

The participants started the study in a synchronous web-
conference meeting, where they were able to directly ask for
clarification if they had any uncertainties. By the end of the
web-conference, the participants continued solving the tasks
independently, while using the provided plugin to specify the

relevance and AK concepts for each web page.
3) After the study: After solving all the tasks, the partici-

pants were asked to fill out an exit survey (available online1).
We asked the participants about their experience searching
for architectural information using Google, as well as the
complexity to analyze web pages regarding AK concepts.

F. Web pages classification

As a result of the study, we received 5175 web pages (with
2623 unique pages) from executing 477 queries in Google,
where each web page is evaluated from a participant regarding
its relevance and AK concepts. To answer RQ1.1 and support
answering the other RQs, we analyzed the resulted unique web
pages to determine the AK source (e.g. forum, blog) for each
page. To achieve this, we followed a semi-automated approach
using two main steps, which are explained in the following
sub-sections.

1) Automatically clustering URLs of web pages: We ex-
ecuted a clustering algorithm [19] on the list of URLs to
determine initial clusters of web pages. We have decided on
this algorithm due to its excellence in clustering short text,
compared to other classical clustering and topic modeling
algorithms (e.g. LDA). Before executing the clustering, we
filtered the URLs regarding symbols and stop words, and
differentiated between host name and path within a URL.

We started the clustering algorithm using a big number
of clusters (i.e. 100 clusters), and then reduced the number
of clusters gradually after checking the results to reach the
best possible clusters of URLs. Starting with a big number
of clusters facilitated determining the commonalities between
smaller groups of URLs, which could be later aggregated
into a single cluster. After several iterations of clustering, we
achieved the best results by having 31 clusters.

By executing the clustering algorithm on the 2623 unique
URLs, it succeeded to split the URLs into 27 consistent
clusters with 1280 URLs (e.g. one consistent cluster is all
blog pages in Apache websites), and 4 inconsistent clusters
(i.e. mixed of different AK sources) with 1343 URLs. This
separation has been determined by inspecting samples of web
pages of the URLs within each cluster.

2) Manually classifying web pages: To determine the AK
source for each web page, we started by analyzing the 27
consistent clusters to determine dominant AK sources in each
cluster. Manually classifying web pages in the consistent
clusters was done by inspecting sample web pages from the
cluster to determine the dominant AK source category of
this cluster. As a result of this step, we identified 15 initial
categories of AK sources, and classified the 1280 URLs within
the consistent clusters.

Based on the 15 initial categories of AK sources, the first
three authors manually categorized the rest of the URLs (1343
web pages from within the 4 inconsistent clusters) into their
respective categories of AK sources. This has been done by
inspecting each of the web pages. While manually inspecting
the web pages, we ignored offline web pages, spam and web
pages in languages other than English or German. Moreover,

a cross-check validation has been conducted between the first
and second authors, as well as between the first and third
authors to ensure agreement on the classification. To ensure
agreement between the authors, we merged the 15 initial
categories into 9 categories.

As a result of this step, we identified categories of AK
sources on the web (see Section IV-A). Moreover, we created
a corpus of 2522 unique web pages, which are categorized
based on their AK sources.

G. Measurement of effectiveness

To answer RQ3.1 and RQ3.2, we measure the effectiveness
of Google using two metrics: Precision@k and Normal-
ized Discount Cumulative Gain(nDCG@k), where k is the
maximum number of search results that are considered for
evaluation. We considered k from 1 to 10 in our evaluations.
Precision@k [20] is the ratio between the number of

relevant web pages (low or medium or high or very high),
by the number of retrieved web pages in the results.

The ranking and relevance of the retrieved web pages
are important factors to assess the effectiveness of search
engines. However, Precision does not consider the ranking
and relevance of web pages. Therefore, we use nDCG@k
[20], which consider both the ranking and relevance of the
retrieved web pages. nDCG@k is a well known metric
in information retrieval and has been used successfully in
software engineering research (e.g. [21]).

The main idea of nDCG@k [20] is to compare the ideal
ranking of web pages (IDCG) to the ranking retrieved from
a search engine for a certain query (DCG). For example,
consider a task for which two users execute a query: the first
user rates the top three web pages with relevance 3, 3, 1 while
the second user rates the top three web pages with relevance
2, 2, 1. Meanwhile, the ideal ranking for this task is 3, 3, 2
when evaluating the top three search results. The nDCG@3
will compare the rankings 3, 3, 1 and 2, 2, 1 against 3, 3, 2.

To compare the rankings of queries with the ideal ranking,
we divide the DCG@k of each query with the IDCG@k (the
DCG@k of the ideal ranking). The ideal ranking is based on
combining the individual rankings of web pages (based on
their relevance to a task) from all participants in the study.

In order to translate the importance of relevance and ranking
into a metric, we calculate the DCG@k for each ranking
(from each query). The DCG@k provides different weights
for web pages based on their relevance and ranking in the
list of results (i.e. the higher the relevance and rank, the
more weight). One common way to implement the DCG@k
is to use the logarithmic scale to provide the right weight
based on the relevance and ranking. Specifically, we calculate

DCG@k =
∑k

i=1

2reli − 1

log2(i+ 1)
, where reli is the degree of

relevance of a web page found by a query (based on the Likert
scale defined in Section III-E1).

To calculate the nDCG@3 for the previous examples q1
and q2, we calculate the DCG@k for the rankings 3, 3, 1

(ranking of q1), 2, 2, 1 (ranking of q2) and 3, 3, 2 (the ideal
ranking).

H. Statistical analysis and significance tests

To answer RQ1.2, RQ2 and RQ4 we used descriptive
statistics. Moreover, we executed Pearson χ̃2 correlation tests
[15] to determine the most relevant relationships.

To compute Pearson χ̃2 correlation tests and measure the
phi coefficient we used the statistics tool SPSS2. Due to the
large sample size, all correlations are significant (even to the
1% level), but only the phi coefficients measured for RQ2
revealed correlations with effect sizes greater than 0.3 which
means medium strong or strong correlations [22].

To answer RQ1.2, we used descriptive statistics to determine
relationships between AK sources (based on our classification
see Sections III-F and IV-A), and the AK concepts (as speci-
fied by practitioners, see Section III-E1). For this, we counted
the occurrences of each AK concept on the web pages and
aggregated this for each AK source separately.

To answer RQ2, we performed a two-tailed T -test [23] with
α = 0.05 on all values of Precision@k and nDCG@k for
each of the three ADD steps separately. Executing the T -test
requires determining if the calculated values of Precision@k
and nDCG@k have equal or unequal variances. Thus, we
executed an F -test [23] with α = 0.05 to determine if the
values of Precision@k and nDCG@k have equal or unequal
variances. Based on the results of F -test, we have executed the
right method of T -test, either with equal or unequal variances.

We answered RQ4 using descriptive statistics to present
the distribution of relevance within each AK concept, i.e. we
evaluated only the web pages that contain the respective AK
concept. Both the AK concepts and relevance of web pages
have been specified by the participants during the study (see
Section III-E1).

IV. RQ1: ARCHITECTURE KNOWLEDGE SOURCES AND
CONCEPTS ON THE WEB

A. RQ1.1: AK sources on the web

Table III shows the identified AK sources, which have
been retrieved by Google when searching for architectural
information. Moreover, Table III shows the percentages of
each category based on our corpus (2522 web pages). The
results suggest that the predominant categories are blogs
and tutorials as well as technology vendor documentations
(and to a lesser extent scientific contents). During our manual
classification (see Section III-F), we found a wide variety of
blogs, such as personal blogs (e.g. Martin Fowler’s blog3)
and technology blogs (e.g. SAP technology blog4). Moreover,
technology vendor documentations come at different levels of
detail, from a high level description of technology to detailed
code specification (e.g Apache technologies56).

2https://www.ibm.com/de-de/analytics/spss-statistics-software
3martinfowler.com
4blog.sap-press.com
5kafka.apache.org/documentation
6flink.apache.org

TABLE III: AK sources on the web
AK source Example %

Blogs and tutorials dzone.com 39%
Technology vendor

documentations metamug.com/docs 23%

Scientific contents ieeexplore.ieee.org 13%
Forums stackoverflow.com 7%

Technical books and
white papers livebook.manning.com 4.5%

Source code repositories github.com 4.5%
Knowledge repositories stackshare.io 4%

Presentations and videos slideshare.net 2.7%
Others

(e.g. tools, patents)
google.com/patents
json.parser.online.fr 2.3%

On the other hand, source code repositories (e.g. Github)
and knowledge repositories are not commonly found in the
search results, and they come in less variety. Furthermore, the
results show that issue tracking systems (e.g. Apache issue
trackers7) are not retrieved at all by Google when searching
for architectural information.

B. RQ1.2: Prominent AK concepts in the AK sources

Figure 1 shows the percentages of occurrence for each of
the AK concepts in the found AK sources (see Section IV-A).
Because each web page can contain multiple AK concepts,
the sum of percentages for all AK concepts in an AK source
can exceed 100% (for more details see the online resources1).
Based on Fig. 1, we can observe the following:
• Solution alternatives, benefits and drawbacks are less

present within the technology vendor documentations and
source code repositories; presumably this is because these
AK sources usually discuss a single architectural solution,
such as the documentation or source code of a specific
technology.

• Made design decisions are underrepresented in all
AK sources. Thus, finding concrete examples of design
decisions (e.g. a decision on specific components of a
system), and their rationale for existing systems are not
as easy to find among the AK sources on the web.

• Solution descriptions are more prominent than the other
AK concepts within technology vendor pages. This is
probably because this AK source focuses on describing
a certain architectural solution in more detail.

V. RQ2: CO-OCCURRENCES OF AK CONCEPTS

In order to evaluate the co-occurrences of AK concepts
in web pages, we measured the correlation between the AK
concepts (as explained in Section III-H). Table IV shows the
correlation coefficients between each pair of AK concepts.

From Table IV, we can observe that the correlation be-
tween benefits and drawback stands out with a correla-
tion coefficient of 0.651 which means a strong correlation
exists [22]. This means that either a) web pages containing
benefits often also contain drawbacks or b) web pages con-
taining drawbacks often also contain benefits. To determine
the right interpretation for the correlation between benefits

7issues.apache.org

TABLE IV: Correlation between each of the AK concepts
Descr. Altern. Benef. Drawb. Decisions

Description 1.000 0.181 0.347 0.203 0.222
Alternatives 1.000 0.355 0.340 0.079
Benefits 1,000 0.651 0.157
Drawbacks 1.000 0.122
Decisions 1.000

TABLE V: Co-occurrences between Benefits and Drawbacks
Drawbacks

Benefits does not contain contains
does not contain 3203 46 3249

contains 820 1106 1929
Sum 4023 1152 5175

and drawbacks, we inspected the exact frequencies of co-
occurrences between benefits and drawbacks (see Table V).
We can observe that drawbacks are rarely presented without
benefits (46 out of 1152), while there are more web pages
containing benefits without drawbacks (820 out of 1929). This
means that it is common to find web pages with benefits
and no drawbacks, while it is rare to find web pages with
drawbacks and no benefits. This can be also seen in Fig.
1. For example, blogs and tutorials contain nearly twice the
amount of benefits compared to drawbacks. This indicates that
software engineers in communities tend to praise the benefits
of technologies rather than realistically evaluate the pros and
cons of technologies equally.

From Table IV, we can also observe that the correlations
between alternatives and benefits, as well as between alterna-
tives and drawbacks (0.355 and 0.340 respectively) are also
medium strong [22]. This indicates that lists of alternative
solutions, are usually accompanied with a comparison
between them regarding their benefits and drawbacks.
One common example for this are knowledge repositories and
forum entries containing alternatives, with their drawbacks and
benefits.

A final observation from Table IV, is a medium strong
correlation (0.347) [22] between solution descriptions and
benefits. This is quite common in technology vendor pages,
where they commonly describe their technologies and their
benefits, while omitting their drawbacks (see Fig. 1).

VI. RQ3: SEARCH ENGINES SUPPORT FOR ADD STEPS

A. RQ3.1: Effectiveness of search engines to support ADD

Figure 2 shows the average nDCG@k and Precision@k
when searching for architectural information during the three
ADD steps. From Fig. 2, we can observe that the maximum
average Precision@1 is 0.75 (for the “Select design concepts”
step), which means that on average 75% of the queries
retrieved a relevant (low, medium, high, very high) web page at
the top result (k=1) from Google. On the other hand, the lowest
Precision@10 is 0.48 (for the “Identify design concepts”
step), which means that on average 48% of the retrieved top 10
web pages were relevant (i.e. have relevance of low, medium,
high, very high); in this case, web search engines return both
relevant and irrelevant results equally.

Fig. 1: Distribution of AK Concepts per AK source

Fig. 2: Average nDCG and precision in finding architectural infor-
mation for each ADD step.

To compare the differences between ADD steps regarding
their nDCG@k and precision@k, we executed a significant
T -test (as explained in Section III-H). The detailed results of
the tests are available online1.

From the test, we found that the “Select design concepts”
step has significantly higher nDCG@k for k between
1 and 9 (nDCG@k1→9) compared to the other two
design steps, while there is no significance difference in
nDCG@k1→10 between the “Identify design concepts” and
“Instantiate architecture elements” steps. For example, from
Fig. 2 the average nDCG@1 for the “Select design concept”
ADD step is 0.42, while the average nDCG@1 is 0.29
for the “Instantiate architecture elements” ADD step. This
means that on average 42% of the “Select design concept”
queries retrieved highly relevant (i.e. very high) web pages
at the top result from Google, compared to just 29% for the
“Instantiate architecture elements”. Thus, finding AK to select
an architectural solution from alternatives is easier than
finding AK to instantiate a certain architectural solution.

The significance test also showed that the “Select design
concepts” step has significantly better precision1 → 9 com-
pared to the “Identify design concepts”. In contrast, there
is only a slight difference of precision1 → 10 between
the “Select design concepts” and “Instantiate architecture
elements”.

Looking at both the nDCG@k and precision@k, on the
one hand we can notice that the “Identify design concepts”

has significantly lower nDCG@k and precision@k compared
to the “Select design concepts”. This means it is harder to
find AK on alternative architectural solutions than to find
information on how to compare them. On the other hand,
the “Instantiate architecture elements” step has significantly
lower nDCG compared to the “Select design concept” step
but a comparable Precision. Because nDCG considers the
ranking and relevance of results compared to Precision,
the nDCG and Precision of the “Instantiate architecture
elements” indicate that Google finds many distantly relevant
web pages (e.g. general concepts on components design) to
support the “Instantiate architecture elements” step. In
contrast, it is challenging for Google to find highly relevant
solutions, which fulfill specific requirements.

B. RQ3.2: The most influential AK sources

Figure 3 shows the top six AK sources (see Table III) with
the highest effectiveness in each of the ADD steps. We can
observe the following:

Blogs and tutorials have the biggest contribution on the
effectiveness of Google in all three ADD steps. Thus, blogs
have the highest relevance and highest ranking, and show
to contain the most useful AK compared to other sources.

Technology vendor documentation shows to have the sec-
ond highest contribution on the effectiveness of Google for
both the “Identify design concepts” and the “Instantiate
architecture elements” steps. This indicates their usefulness
to identify options for architectural solutions. Moreover, tech-
nology vendor documentation contains detailed information
regarding the technology features, which are useful for the
“Instantiate architectural elements” step. As shown in Section
IV-B solution alternatives and solution drawbacks are under-
represented in technology vendor documentation, which may
be the reason why they are not as effective for the “Select
design concepts” step.

Knowledge repositories (e.g. [9]) show to be effective for
@k1→2 (i.e. for the top two Google results) only within
the “Select design concepts” step, while it has a negligible
contribution on the effectiveness within the other two ADD

Fig. 3: The contribution of each AK source in the effectiveness of Google per ADD step

Fig. 4: Distribution relevance per concept

steps. This is because most knowledge repositories on the
web (e.g. stackshare) contain mainly high level information
to compare multiple technologies with each other; they can
thus somewhat help with “Selecting design concepts”.

Scientific contents (e.g. papers or thesis) show to have
a higher contribution on the effectiveness of Google than
forums and source code repositories, for the “Instantiate
architecture elements” step. This could be due to the scarcity
of AK regarding component designs in forums and source code
repositories, while scientific contents are rich with component
designs (e.g. reference architectures).

Forums and source code repositories show to have a
limited influence on the effectiveness of Google of searching
within the three ADD steps. This might be because both
forums and source code repositories are not well found by
Google (see Table III) compared to the other AK sources.

VII. RQ4: AK CONCEPTS IN HIGHLY RELEVANT WEB
PAGES

Figure 4 shows the total number of relevant web pages
(presented as “n” in the figure), and the percentages of the
different degrees of relevance (low, medium, high and very
high as rated by the participants), in which AK concepts
appear. From Figure 4, we can observe that web pages that
contain solution benefits, solution drawbacks and made
design decisions are most relevant for finding AK, while
web pages with solution description’ and solution alternatives
have a lower probability to be high or very high in relevance.
For example, a web page containing solution drawbacks has
a higher probability to be rated high or very high in relevance

(72.7%) than a web page containing solution alternatives
(56.5%). (Details are available online1).

Even though, solutions drawbacks and made design deci-
sions are not found by Google in its results as often as solution
descriptions and solution alternatives, they showed to be the
most common AK concepts in highly relevant pages, and thus
they could be the most important for making design decisions.

VIII. DISCUSSION

A. RQ1: AK sources and concepts on the web
1) Implications for practitioners: The list of AK sources

on the web (see Table III) and their respective AK concepts
(see Fig. 1) could guide practitioners to determine the scope
of searching (i.e. to search in the whole web or in specific
web sites). For example, forums like Stackoverflow have
shown to contain useful AK (e.g. [7], [24]) about the benefits
and drawbacks between architectural solutions (see Fig. 1).
However, forums are not well considered by Google (see Table
III). Thus, practitioners should focus the scope of searching
on specific forums like Stackoverflow to find more AK on the
benefits and drawbacks between solutions.

2) Implications for researchers: The list of AK sources in
Table III provides an overview of possible web sources of
AK, from which researchers could extend current approaches
to document AK (e.g. [2]). On the one hand, blogs are well
indexed by Google but not previously explored by researchers
for AK. Thus current studies on AK (e.g. [7], [24]) could
be extended to explore the AK in blogs. On the other hand,
some AK sources are previously explored by researchers for
AK (e.g. forums [24] and issue tracking systems [3]), but they
are not well indexed by Google. These AK sources deserve
extra attention to improve their ranking on web search results.

The distribution of AK concepts in each AK source in Fig. 1
show that there is no single AK source which contains specific
AK concepts. However, certain AK concepts come more often
in certain AK sources. Thus, researchers could make use of
this information to develop AK documentation approaches,
which consider multiple AK sources. For example, an AK
approach can find and document benefits and drawbacks
from forums, and solution description from technology vendor
documentations.

B. RQ2: Co-occurrences of AK concepts
1) Implications for practitioners: The results in Section

V show that benefits are preconditions for the occurrence of

drawbacks in web pages, and that drawbacks rarely come alone
in a separate web page. The results increase the awareness
of practitioners that the predominant presence of benefits on
the web does not mean lack of drawbacks for architectural
solutions; it rather means the rarity of drawbacks on the web.
To resolve this problem, practitioners should use web search
engines to search explicitly for the drawbacks of architectural
solutions.

2) Implications for researchers: The co-occurrences be-
tween AK concepts in Section V shows that AK concepts
do not come all together in a single web page. However,
subsets of AK concepts co-occur together more often than
others. For instance the correlations between AK concepts in
Table IV could be grouped into three subsets of AK concepts:
(benefits and drawbacks), (alternatives, benefits and draw-
backs), and (Solution description and benefits). Researchers
need to consider this division of AK concepts on the web,
when developing approaches to automatically capture AK (i.e.
search for AK, and codify it), e.g. developing dedicated AK
capturing approaches for each subset of AK concepts.

C. RQ3: How search engines support the ADD steps

1) Implications for practitioners: The results in Section
VI-A verified previous experiences with practitioners [2] that
web-search engines return many irrelevant results. However,
our study provides the first precise evidence on the effective-
ness of Google to find AK for each ADD step. The differences
in the effectiveness between the ADD steps (as shown in Fig.
2) can help increase the awareness regarding the expected
relevance of the retrieved results. This can guide practitioners
to determine when to rely on web search engines, and when
to seek other ways (e.g. asking experts) to search for AK. For
instance, practitioners could rely on search engines to find
AK for the “Select design concepts” step. But, they are better
off seeking other ways during the “Instantiate architecture
elements” step, as many of the retrieved results from web
search engines are distantly relevant.

2) Implications for researchers: The results in Section
VI-A support prioritizing requirements for AK management
approaches, and especially about which ADD steps to support
better. For instance, researchers should give higher priority to
extending AK capturing approaches for the “Identify design
concepts” and the “Instantiate architecture elements” steps,
as Google has lower effectiveness in supporting these steps.
This is probably because Google cannot determine the context
of software engineers when identifying or instantiating archi-
tectural solutions. To support the “Identify design concepts”
step, researchers could propose approaches that relate busi-
ness requirements, design issues and alternative architectural
solutions. Moreover, to support the “Instantiate architecture
elements” step, design decisions and their rationale should be
captured from existing systems and shared with practitioners.

The results in Section VI-B verify that blogs and tutorials
are valid options for exploring and capturing AK, because
they are the most relevant and highly ranked. However, during
our web pages classification (see Section III-F), we found

that blogs and tutorials are quite diverse (e.g. private versus
company blogs). This makes it very challenging to apply
information retrieval or extraction techniques on blogs. Thus,
we propose first exploring the different types of blogs and
tutorials and the AK concepts inside them. Moreover, the
results in Section VI-B can support developing specialized
software architecture searching approaches. One idea is to re-
rank results of Google differently for each ADD step; this can
be achieved by developing heuristics based on the effectiveness
of AK sources to support ADD steps (see Fig. 3).

D. RQ4: AK concepts in highly relevant web pages

1) Implications for practitioners: Section VII shows that
solution drawbacks and made design decisions are the most
frequently appearing AK concepts within highly relevant web
pages. This indicates the importance of solution drawbacks
and made design decisions for practitioners. On the one hand,
solution drawbacks provide AK on when an architectural so-
lution could be discouraged. This is important for practitioners
to prevent selecting architectural solutions, which must be
replaced later due to their drawbacks. Replacing architectural
solutions after their implementation often requires substantial
effort. On the other hand, made design decisions can be
potentially reused by practitioners. Thus, practitioners should
share more AK about solution drawbacks and their made
design decisions on the web (e.g. in blogs or white papers);
this can be done in academic or industry conferences, or by
creating dedicated community websites for this type of AK.

2) Implications for researchers: The results in Section
VII support prioritizing AK management approaches to fo-
cus on important AK concepts with the highest relevance
to practitioners. For example, researchers should consider
automatically capturing AK related to made design decisions
and solution drawbacks more than other AK concepts, because
they contain the most relevant AK for making design deci-
sions. Developing such approaches can be challenging because
both made design decisions and solutions drawbacks present
minorities compared to other AK concepts on the web (see
Fig. 1). Thus, using classification algorithms could be useful
to filter web pages on the web with drawbacks or decisions.

IX. THREATS TO VALIDITY

1) Construct validity: In our study in Section III-E2, the
experience and background of participants (see Table I) might
have influenced their assessment of web pages (i.e. specifying
the relevance and the AK concepts). To mitigate this, the
participants received training, and materials (as a user guide
and video). In addition, the participants were accompanied
by the researchers at the beginning of the study. Also, since
participants solved some tasks on their own time, we did not
have full control of their behavior (e.g. fatigue). However, we
tried to mitigate this by changing the sequence of tasks for
each participant.

Another threat of validity is the possibility of mistakes in
gathering data from participants during the study. To mitigate
this, the participants used a plugin, which captured their input

and stored it in a database for analysis. In this way, we were
able to verify the data for any possible mistakes, and validate
it with the participants.

2) Reliability: The classification of web pages into their
respective AK sources presents a threat to reliability. However,
we tried to ensure consistency in the classification, by estab-
lishing categories that have the highest agreement between
the first three authors of the paper. Moreover, to facilitate
replicating the analysis, we provide our corpus online1.

3) External validity: Our study used Google as our case
for a search engine, without exploring other search engines
(e.g. Bing or Baidu). However, Google is the most popular
search engine, and thus our results could be generalized on
most users. Our limited number of tasks (six tasks in Table II)
compared to the high variety of architectural tasks in practice
is another threat to the external validity. To partially mitigate
this, we have designed two tasks for each ADD step to reduce
the dependency on a single task. Finally, the limited number
of participants (see Table I) in the study is another threat
to the external validity of results. However, the participants
have different backgrounds and experiences, which supports,
to some extent the generalizability of results.

X. RELATED WORK

We are not aware of any previous studies on web searching
approaches to find AK. Thus, our study is the first to inves-
tigate using web searching to perform architectural tasks. In
this section, we discuss some related work in the fields of AK,
as well as studies on web searching in software engineering.

Architectural knowledge. Researchers in the field of AK
have explored the main AK concepts, such as design decisions
[18], their types [25], rationale of decisions [26] and solutions
alternatives [5]. These studies established the fundamental
AK concepts, which we investigate in our presented study.
However, they do not propose approaches for capturing or
finding AK.

Some approaches propose catalogs and repositories of AK
to facilitate structuring and sharing AK. For example, Elmalki
and Zdun [27] modeled common types of ADDs for microser-
vice architectures. Malakuti et al. [28] created a catalog for
the types of ADDs when designing IOT system. While they
can guide software engineers during design space exploration,
they require extra manual effort to find and codify AK.

Recent efforts on AK propose approaches to automatically
capture AK from different AK sources using machine learning
and information retrieval techniques. For example Gorton et
al. [2] proposed an approach to identify AK in technology
documentation, and specially identify documents with certain
architectural tactics (as one architectural solution). Bhat et al.
[3] captured AK from issue tracking systems. They especially
captured and classified the different types of design decisions
(as one AK concept) in issue tracking systems. Soliman
et al. [16] improved the effectiveness of searching for AK
in Stackoverflow. The approach uses machine learning and
heuristics to re-rank the results of search engines. However,

all three approaches do not study the effectiveness of web
searching to support architectural activities.

Web searching in software engineering. Some approaches
empirically investigated the usage of web searching by soft-
ware engineers. Xia et al. [11] empirically determined the most
common and most complex software engineering tasks (e.g.
searching for solutions to bugs or for third party libraries)
using web search engines. Rahman et al. [29] studied the
effectiveness of web searching when searching for source code
on the web. Their results show that searching for source code
is harder than searching for other types. Hassan et al. [30]
empirically analyzed web search queries and results related
to code exceptions. Moreover, they proposed an approach to
capture knowledge related to code exceptions from the web.
However, these three studies do not consider finding AK to
perform software architectural tasks.

Other approaches tried to improve the effectiveness of
retrieving code examples from the web. For example, Wang
et al. [31] proposed an approach to capture code examples
regarding API usage from the web. Sirres et al. [32] proposed
an approach to improve the effectiveness of source code
retrieval by augmenting queries with knowledge from Stack-
overflow and Github. Their results improve the effectiveness
of source code searching compared to Google. However, their
approaches focus on finding source code rather than AK.

XI. CONCLUSION AND FUTURE WORK

Our main goal in this paper is to explore the retrieved
architectural knowledge (AK) from the web, and the ef-
fectiveness of web search engines, when performing three
Attribute-Driven Design (ADD) architectural steps. To achieve
our goal, we conducted an exploratory study with software
engineers, who used Google to find AK for making design
decisions. Our results provide several interesting results. First,
we provide an overall view on the different sources of AK
and their associated AK concepts on the web. This can be
useful to extend current AK capturing approaches. Second, we
determined the differences in the effectiveness of Google when
performing the ADD steps, which help to better understand
the main capabilities of web search engines to search for
AK. Finally, we identified AK concepts on the web, which
provide the highest benefit for practitioners when making
design decisions. This can provide a guidance for practitioners
to share their AK on the web.

The results of this study motivate us to extend current AK
capturing approaches to focus on the most useful AK sources
(e.g. blogs), and the most scarce and useful AK concepts
(e.g. design decisions and drawbacks of solutions). Moreover,
we aim to propose specialized web searching approaches to
enhance the effectiveness of searching for AK.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[2] I. Gorton, R. Xu, Y. Yang, H. Liu, and G. Zheng, “Experiments in Cura-
tion: Towards Machine-Assisted Construction of Software Architecture
Knowledge Bases,” in IEEE/IFIP ICSA 2017, 4 2017, pp. 79–88.

[3] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes, “Au-
tomatic extraction of design decisions from issue management systems:
A machine learning based approach,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 10475 LNCS. Springer Verlag,
2017, pp. 138–154.

[4] M. Soliman, M. Riebisch, and U. Zdun, “Enriching Architecture Knowl-
edge with Technology Design Decisions,” in WICSA, 5 2015, pp. 135–
144.

[5] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249–1267, 2009.

[6] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar,
“A comparative study of architecture knowledge management tools,”
Journal of Systems and Software, vol. 83, no. 3, pp. 352–370, 2010. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V0N-
4X4GHP5-1/2/84a45c0d6dda12f7f563273ff85be120

[7] M. Soliman, M. Galster, and M. Riebisch, “Developing an Ontology for
Architecture Knowledge from Developer Communities,” in IEEE/IFIP
ICSA 2017, 4 2017, pp. 89–92. [Online]. Available: https://www.inf.uni-
hamburg.de/en/inst/ab/swk/research/publications/pdf/2017-soliman-
icsa.pdf

[8] A. Barua, S. W. Thomas, and A. E. Hassan, “What Are Developers
Talking About? An Analysis of Topics and Trends in Stack Overflow,”
Empirical Softw. Engg., vol. 19, no. 3, pp. 619–654, 6 2014.

[9] I. Gorton, J. Klein, and A. Nurgaliev, “Architecture Knowledge for
Evaluating Scalable Databases,” in WICSA, IEEE/IFIP, 5 2015, pp. 95–
104.

[10] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10
Years of Software Architecture Knowledge Management,” J. Syst.
Softw., vol. 116, no. C, pp. 191–205, 6 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2015.08.054

[11] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing,
“What do developers search for on the web?” Empirical Software
Engineering, vol. 22, no. 6, pp. 3149–3185, 12 2017. [Online].
Available: https://link.springer.com/article/10.1007/s10664-017-9514-4

[12] R. Kazman and H. Cervantes, Designing Software Architectures: A
Practical Approach. Addison-Wesley Professional, 2016.

[13] K. Byström and P. Hansen, “Conceptual framework for tasks in
information studies,” Journal of the American Society for Information
Science and Technology, vol. 56, no. 10, pp. 1050–1061, 2005.
[Online]. Available: http://dx.doi.org/10.1002/asi.20197

[14] P. Runeson, Case study research in software engineering : guidelines
and examples. Wiley, 2012.

[15] K. Pearson, “I. Mathematical contributions to the theory of evolution.
{\textemdash}{VII}. On the correlation of characters not quantitatively
measurable,” Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character,
vol. 195, no. 262-273, pp. 1–47, 1 1900.

[16] M. Soliman, A. Rekaby Salama, M. Galster, O. Zimmermann, and
M. Riebisch, “Improving the Search for Architecture Knowledge in
Online Developer Communities,” in Proceedings - 2018 IEEE 15th
International Conference on Software Architecture, ICSA 2018. Institute
of Electrical and Electronics Engineers Inc., 7 2018, pp. 186–195.

[17] O. Zimmermann, “Architectural decision identification in architectural
patterns.” in WICSA/ECSA Companion Volume, ser. ACM International
Conference Proceeding Series, T. Männistö, M. A. Babar, C. E. Cuesta,
and J. E. Savolainen, Eds., vol. 704. ACM, 2012, pp. 96–103.

[18] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions,” in WICSA, 2005, pp. 109–120.

[19] J. Yin and J. Wang, “A Dirichlet multinomial mixture model-
based approach for short text clustering,” in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. New York, New York, USA: Association
for Computing Machinery, 2014, pp. 233–242. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2623330.2623715

[20] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to Informa-
tion Retrieval,” 2008. [Online]. Available: https://nlp.stanford.edu/IR-
book/information-retrieval-book.html

[21] S. Gottipati, D. Lo, and J. Jiang, “Finding Relevant Answers in Software
Forums,” in IEEE/ACM ASE 2011, ser. ASE ’11. IEEE Computer
Society, 2011, pp. 323–332.

[22] J. Cohen, “Statistical Power Analysis for the Be-
havioral Sciences — ScienceDirect.” [Online]. Avail-
able: https://www.sciencedirect.com/book/9780121790608/statistical-
power-analysis-for-the-behavioral-sciences

[23] A. Dean, D. Voss, and D. Draguljić, Design and Analysis
of Experiments, ser. Springer Texts in Statistics. Cham:
Springer International Publishing, 2017. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-52250-0

[24] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Architectural
Knowledge for Technology Decisions in Developer Communities: An
Exploratory Study with StackOverflow,” in IEEE/IFIP WICSA 2016, 4
2016, pp. 128–133.

[25] P. Kruchten, P. Lago, and H. Vliet, “Building Up and Reasoning About
Architectural Knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science, C. Hofmeister, I. Crnkovic, and
R. Reussner, Eds. Springer Berlin Heidelberg, 2006, vol. 4214, pp.
43–58.

[26] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model
for design traceability and reasoning,” Journal of Systems and
Software, vol. 80, no. 6, pp. 918–934, 6 2007. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121206002287

[27] A. El Malki and U. Zdun, “Guiding architectural decision making
on service mesh based microservice architectures,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11681 LNCS.
Springer Verlag, 2019, pp. 3–19.

[28] S. Malakuti, T. Goldschmidt, and H. Koziolek, “A catalogue of ar-
chitectural decisions for designing IIoT systems,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11048 LNCS.
Springer Verlag, 2018, pp. 103–111.

[29] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,
C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how developers
use general-purpose web-search for code retrieval,” in Proceedings
- International Conference on Software Engineering. New York,
NY, USA: IEEE Computer Society, 5 2018, pp. 465–475. [Online].
Available: https://dl.acm.org/doi/10.1145/3196398.3196425

[30] F. Hassan, C. Bansal, N. Nagappan, T. Zimmermann, and A. H.
Awadallah, “An empirical study of software exceptions in the
field using search logs,” in International Symposium on Empirical
Software Engineering and Measurement. New York, NY, USA:
IEEE Computer Society, 10 2020, pp. 1–12. [Online]. Available:
https://dl.acm.org/doi/10.1145/3382494.3410692

[31] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang, “APIExample:
An effective web search based usage example recommendation system
for java APIs,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2011, Proceedings, 2011, pp.
592–595.

[32] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and
Y. L. Traon, “Augmenting and structuring user queries to support
efficient free-form code search,” Empirical Software Engineering,
vol. 23, no. 5, pp. 2622–2654, 10 2018. [Online]. Available:
https://link.springer.com/article/10.1007/s10664-017-9544-y

