
Identification and Remediation of Self-Admitted
Technical Debt in Issue Trackers

Yikun Li, Mohamed Soliman, Paris Avgeriou
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

University of Groningen
Groningen, The Netherlands

{yikun.li, m.a.m.soliman, p.avgeriou}@rug.nl

Abstract—Technical debt refers to taking shortcuts to achieve
short-term goals, which might negatively influence software
maintenance in the long-term. There is increasing attention on
technical debt that is admitted by developers in source code
comments (termed as self-admitted technical debt or SATD). But
SATD in issue trackers is relatively unexplored. We performed
a case study, where we manually examined 500 issues from two
open source projects (i.e. Hadoop and Camel), which contained
152 SATD items. We found that: 1) eight types of technical debt
are identified in issues, namely architecture, build, code, defect,
design, documentation, requirement, and test debt; 2) developers
identify technical debt in issues in three different points in time,
and a small part is identified by its creators; 3) the majority
of technical debt is paid off, 4) mostly by those who identified
it or created it; 5) the median time and average time to repay
technical debt are 25.0 and 872.3 hours respectively.

Index Terms—mining software repositories, self-admitted tech-
nical debt, technical debt introduction, technical debt repayment,
issue tracking system

I. INTRODUCTION

Technical debt (TD) refers to taking shortcuts, either de-
liberately or inadvertently, to achieve short-term goals, which
might negatively influence the maintenance and evolution of
software in the long term [1]. Technical debt can be incurred in
activities throughout the whole development life cycle, from
requirements, to design, implementation, testing, etc. There
have been several approaches supporting the identification of
technical debt in almost all of these activities [2]. For example,
there are approaches detecting code debt by analyzing source
code [2], and test debt by analyzing test reports [2].

A part of technical debt is declared as such by the develop-
ers themselves; for example when developers state in source
code comments, that something is not right and should be
fixed. This has been termed “Self-Admitted Technical Debt”
(SATD) [3]. SATD is often complementary to other types of
technical debt items, as it provides information that cannot be
uncovered through other means of technical debt identification.
For example deciding to use a sub-optimal library is likely to
be captured in a source code comment but it cannot be detected
from source code. Maldonado and Shihab [3] detected five
types of SATD (i.e. requirement, code, design, defect, and
documentation debt) from source code comments.

This work was supported by ITEA3 and RVO under grant agreement No.
17038 VISDOM (https://visdom-project.github.io/website).

While current work on SATD has focused on source code
comments, there are other potentially rich sources of infor-
mation containing SATD. In this paper we focus on SATD in
issue trackers, as developers often discuss about technical debt
when working on issues. There has been some research work
exploring technical debt in issue tracking systems [4], [5],
showing the possibility of detecting TD through issue trackers,
and analyzing the characteristics of technical debt issues, such
as opening time, and number of watchers. However, SATD in
issue tracking systems is still relatively unexplored.

The main goal of this paper is to analyze the types of
SATD in issue tracking systems, and to determine how software
engineers identify and resolve them. To achieve our goal, we
conducted a case study where we performed a qualitative
analysis on a sample of 500 issues. Specifically, we identified
and analyzed sentences in issues that refer to SATD. Our
findings indicate that: 1) eight types of technical debt are found
in issues, namely architecture, build, code, defect, design,
documentation, requirement, and test debt; 2) there are three
distinct cases of identifying technical debt in issue trackers,
while only a small part (13.1%) of technical debt is identified
by its creators; 3) the majority of technical debt is paid off,
mostly by those who identified or created it (47.7% and 44.0%
respectively); 4) the median time and average time spent on
technical debt repayment are 25.0 and 872.3 hours.

Our findings provide a number of implications to practi-
tioners and researchers, including: 1) using issue trackers as
complementary sources to source code comments for debt
detection; 2) developing approaches to detect technical debt,
depending on the time that the debt is identified; 3) reporting
urgent technical debt in issue trackers, rather than in source
code comments, for quicker repayment.

The remainder of this paper is organized as follows. In
Section II, related work is discussed. Section III presents a
typical issue life cycle, accompanied with an example. The
case study design is then elaborated in Section IV, while the
results are presented and discussed in Section V and Sec-
tion VI respectively. Finally, threats to validity are evaluated
in Section VII and conclusions are drawn in Section VIII.

II. RELATED WORK

In this study, we investigate technical debt in issue trackers,
which is a type of SATD. Thus, we organize the related work

https://visdom-project.github.io/website

into two parts: work related to SATD in general and work
related to technical debt in issue trackers.
Self-admitted Technical debt: Potdar and Shihab [6] studied
self-admitted technical debt in source code comments within
four open source projects. They found that a range of 2.4%
to 31.0% of source files contain SATD and 26.3% to 63.5%
of debt is eventually removed. In a follow-up study, Mal-
donado and Shihab [3] studied five open source projects and
discovered the following five types of SATD: design, defect,
documentation, requirement, and test debt.

There has also been work related to paying back SATD.
Maldonado et al. [7] analyzed five Apache projects to study the
removal of SATD. They found that most of SATD is removed
by the same person that introduced it, and on median, it takes
18 to 172 days to remove SATD comments. Zampetti et al. [8]
also analyzed the removal of SATD in five Java open source
projects. The findings showed that 20% to 50% of SATD is
removed unintentionally, and 8% of debt removal is recorded
in commit messages. Our work differs from the work described
above, as we look into SATD within issue trackers, instead of
source code comments.
Technical debt in issue trackers: To the best of our knowl-
edge, only two studies have focused on the detection and
comprehension of technical debt in issue trackers. The first, by
Bellomo et al. [4] presents a classification method for technical
debt issues. They manually examined 1,264 issues in four issue
trackers from two government projects and two open source
industry projects. From this set, they classified 109 issues
as technical debt issues and derived generic characteristics
for these issues. The second study, by Dai and Kruchten [5]
analyzed issues from a commercial software issue tracker by
reading issue summaries and descriptions. From 8,149 ana-
lyzed issues, they classified 331 as TD issues, and categorized
them into six types - defect, requirement, design, code, UI,
and architecture debt. Subsequently, by using machine learning
techniques, they trained a classifier with the analyzed issues
to automatically classify TD issues.

Our study also classifies issues into types of technical debt
(RQ1). But it differs, as it also focuses on how technical
debt items are identified (RQ2), and how technical debt items
are repaid by developers (RQ3). Moreover, we analyze issues
on the sentence level by reading each sentence in the issue
summary, description, and comments. If a sentence or a group
of sentences indicates technical debt, we tag it as a technical
debt statement. This is different from the aforementioned
related studies [4], [5] as they both classified whole issues
as technical debt issues or non-technical debt issues. Treating
a whole issue as a single type of technical debt may be
inaccurate, because software engineers might discuss several
types of technical debt in the same issue. For example, in issue
HADOOP-67301, software engineers discuss both code debt
and test debt.

III. BACKGROUND - ISSUE LIFE CYCLE

In general, an issue tracker is a system for issue manage-
ment. A managed issue is not only limited to defects but also

new features or refactoring. An issue has its own life cycle,
from the time it is created until the time it is resolved. The
typical steps of this life cycle and an example of each step are
shown in Table I.

TABLE I
AN EXAMPLE OF AN ISSUE LIFE CYCLE.

No. Step Description Example (Hadoop-110742)

1 Create
Issue

Usually, software developers
create an issue when they
find bugs or have new
requirements. They first
create an issue, which is
assigned a unique issue key
and describe that issue in
detail.

“Now that hadoop-aws has
been created, we should
actually move the relevant
code into that module,
similar to what was done
with hadoop-openstack,
etc.” (unique key is
Hadoop-11074)

2

Discuss
and
Create
Patch

At a later stage, developers
start working on it: they
comment inside the issue
analyzing the problem and
sharing their ideas about the
solution, and then create a
patch to address the issue.

“HADOOP-11074.patch is
attached. This patch does
the following: Move the s3
and s3native FS connector
code from hadoop- common
to hadoop-aws...”

3 Code
Review

The proposed patch is
reviewed by other
developers, and feedback is
given. If no problem is
found in the patch, they
proceed to step No.6,
otherwise to the next step.

“Can you add an @Ignore
on the tests which are
failing, so that we can have
a green upstream build? +1
once that’s addressed.”

4 Update
Patch

According to the code
review feedback, developers
refine the patch and submit
it again for another round of
code review.

“HADOOP-11074.patch.2 is
attached. Change the
original patch to... This
should get Jenkins passing.”

5 Code
Review

The code is reviewed once
more. If it passes,
developers proceed to the
next step; otherwise, they
go back to step No.4.

“+1, will commit in an
hour or two if there are no
more comments.”

6
Final
Code
Commit

The approved patch is
committed to the repository
with the issue key included
in the commit message, and
then the issue status is
changed to Resolved.

“Patch is committed.
Commit message:
HADOOP-11074. Move
s3-related FS connector
code to hadoop-aws.”

IV. CASE STUDY DESIGN

The goal of this study, formulated according to the Goal-
Question-Metric [9] template is to “analyze issues in issue
tracking systems for the purpose of characterizing the tech-
nical debt within the issues with respect to the types, the
introduction, and the repayment of technical debt from the
point of view of software developers in the context of open
source software”. This goal is refined into three research
questions (RQs):

• (RQ1) What types of technical debt are reported in
issues? Having knowledge of the types of technical debt
could help us understand the strengths and limitations of
detecting technical debt in issue trackers. For example,
we may find that a specific type of technical debt is only
detected in issues and not in other sources, or that it is
mostly detected in issues. That can help in proposing

1https://jira.apache.org/jira/browse/HADOOP-6730
2https://jira.apache.org/jira/browse/HADOOP-11074

https://jira.apache.org/jira/browse/HADOOP-6730
https://jira.apache.org/jira/browse/HADOOP-11074

Fig. 1. The framework of our approach.

approaches for detecting technical debt that combine
different sources. Although Dai and Kructhen [5] also
studied types of debt in issues, they only analyzed the
issue summary and description. In contrast, we analyze
entire issues (including the comments) at the level of
sentences.

• (RQ2) When do software developers identify technical
debt in issues? This RQ aims at understanding the point in
time that debt is identified in issue trackers. For example,
technical debt can be incurred when working on an issue,
or it can exist beforehand and the issue is created to
address it. This can help researchers to tune their TD
detection approaches depending on when it is identified.
For example, if the technical debt is added to a patch and
eventually the patch is rejected (not committed), the debt
is not added to the system. In this case, an approach may
falsely detect this debt item in a code review statement
regarding that (rejected) patch.

• (RQ3) How do software engineers resolve technical debt
in issues? This is further refined into 3 sub-questions:
◦ (RQ3.1) How much technical debt is resolved?

Quantifying how much technical debt is paid off,
helps us understand developers’ attitudes towards
technical debt and of course the magnitude of the
problem. For instance, if most of the debt is dis-
cussed and resolved, it would imply that developers
are aware of the harmfulness of technical debt and
take action resolving it. It would also imply that
technical debt in issues does not pose a critical threat.

◦ (RQ3.2) Who resolves technical debt? Technical debt
can be resolved by those who created it, those who
discovered it, or by others. This aids in understanding
the practices of developers, e.g. if those that incur
debt take the responsibility to resolve it. It can also
be used to assist with debt repayment; for example if
the debt creator did not resolve it, another developer
may need more documentation to understand the
problem well enough in order to solve it.

◦ (RQ3.3) How long does it take to resolve technical
debt? Knowing how long it normally takes to repay
technical debt after discovering it, is helpful for tech-
nical debt management. Technical debt that is long-
lived causes extra maintenance effort and should thus
be prioritized for remediation.

Fig. 1 shows the approach we follow to answer the research
questions. The four individual processes (automated and man-
ual) are explained in the following sub-sections.

A. Data collection

To answer the research questions, we looked into Apache
Java projects since they are of high quality and supported by
mature communities. To select Apache projects pertinent to
our study goal, we set the following criteria:

1) Both the issue tracking project and the source code
repository are publicly available and well-maintained.

2) They have at least 1,000,000 source lines of code
(SLOC) and 10,000 issues in the issue tracker. This is
to ensure sufficient complexity.

3) Source code commits involve their associated issue keys
within their comments. This is important to support
linking commits (in the source code repository) with
issues (in the issue tracker). This is further motivated in
Section IV-C.

4) They are commonly used in other SATD studies (e.g.
[7]). This allows us to compare the results between our
study and other SATD studies.

Based on these criteria, we selected Hadoop3 and Camel4.
Both projects were studied for SATD [7], were developed in
Java, used Git as a source code repository and JIRA5 as an
issue tracker. We analyzed the latest released versions on Jan
16, 2020. Table II shows some details for the two projects. The
number of Java files and SLOC are calculated using the LOC
tool6. The number of contributors is obtained from GitHub.
We used the JIRA Python package to extract all Hadoop and
Camel issues from the online server and stored them in a local
database; then we counted the number of issues.

TABLE II
DETAILS OF CHOSEN PROJECTS.

Project # Java files SLOC # Contributors # Issues # Filtered issues

Hadoop 10,918 1,700,501 259 16,808 6,685
Camel 17,585 1,196,790 583 14,411 12,259

B. Filtering issues

To ensure that we study issues with a complete life cycle
(as shown in Table I), we applied two filtering criteria:

1) Issue status: Since we are aiming at studying technical
debt items that were resolved, we focus on issues that

3https://hadoop.apache.org
4https://camle.apache.org
5https://jira.apache.org
6https://github.com/cgag/loc

https://hadoop.apache.org
https://camle.apache.org
https://jira.apache.org
https://github.com/cgag/loc

TABLE III
DEFINITIONS OF INDICATORS OF DIFFERENT TYPES OF TECHNICAL DEBT IN ISSUE TRACKERS.

Type Indicator Reused Definition

Architecture debt Violation of modularity • Because shortcuts were taken, multiple modules became inter-dependent,
while they should be independent.

Using obsolete technology ◦ Architecturally-significant technology has become obsolete.

Build debt Under- or over-declared
dependencies •

Under-declared dependencies: dependencies in upstream libraries are not
declared and rely on dependencies in lower level libraries.
Over-declared dependencies: unneeded dependencies are declared.

Poor deployment practice ◦ The quality of deployment is low that compile flags or build targets are not
well organized.

Code debt Complex code ◦ Code has accidental complexity and requires extra refactoring action to
reduce this complexity.

Dead code ◦ Code is no longer used and needs to be removed.
Duplicated code • Code that occurs more than once instead of as a single reusable function.

Low-quality code ◦ Code quality is low, for example because it is unreadable, inconsistent, or
violating coding conventions.

Multi-thread correctness • Thread-safe code is not correct and may potentially result in
synchronization problems or efficiency problems.

Slow algorithm • A non-optimal algorithm is utilized that runs slowly.
Defect debt Uncorrected known defects • Defects are found by developers but ignored or deferred to be fixed.
Design debt Non-optimal decisions ◦ Non-optimal design decisions are adopted.

Documentation debt Outdated documentation • A function or class is added, removed, or modified in the system, but the
documentation has not been updated to reflect the change.

Low-quality documentation ◦ The documentation has been updated reflecting the changes in the system,
but quality of updated documentation is low.

Requirement debt Requirements partially
implemented ◦ Requirements are implemented, but some are not fully implemented.

Non-functional requirements
not fully satisfied ◦ Non-functional requirements (e.g. availability, capacity, concurrency,

extensibility), as described by scenarios, are not fully satisfied.

Test debt Expensive tests ◦ Tests are expensive, resulting in slowing down testing activities. Extra
refactoring actions are needed to simplify tests.

Lack of tests ◦ A function is added, but no tests are added to cover the new function.
Low coverage • Only part of the source code is executed during testing.

are done or closed. Thus, we removed all issues with
status Open or Pending Closed.

2) Availability of issue key in commits: Although some
issues have their status set to Resolved and developers
commented that the patches are successfully committed
to the repositories, we cannot find the related commits
in Git. This is mostly because developers did not include
the issue key in the corresponding commit messages. We
also exclude these issues, since we need the commit in-
formation to be able to answer RQ3 on debt repayment.

The final number of issues after filtering is listed in the
rightmost column of Table II.

C. Linking issues with commits

In order to determine how software engineers actually
resolve technical debt (i.e. answering RQ3), we have to capture
the code commits associated with an issue. This information
is needed to determine the software developers responsible
for repaying technical debt (RQ3.2) and the time for this
repayment (RQ3.3).

Since in the previous step, we ensured that the commit
messages contain the related issue keys, we use those keys to
link issues with commits. In practice, we first output the Git
commit log, and match the issue key by applying a regular

expression to the commit log. Then all matched commits
(including commit date, commit message, and commit author)
are inserted into the issue holding the issue key ordered by
time, and then the issue with commit information is stored in
a local database.

D. Issue manual analysis

The filtering step resulted in 18944 issues that fulfill our
criteria (see Section IV-B): 6685 for Hadoop and 12259 for
Camel. Since manually analyzing issues is extremely time-
consuming, we are only able to analyze a subset. From this set,
we randomly selected a sample of 500 issues for analysis: 250
issues from each project (i.e. Hadoop and Camel). The size
of our sample is in line with similar studies, e.g. Zaman et al.
analyzed 400 issues to study performance bugs [10]. To ana-
lyze issues for technical debt, we followed the instructions for
qualitative analysis proposed by Runeson et al. [11]. We used
a professional qualitative content analysis tool (ATLAS.ti7) to
annotate relevant sentences within the sample issues.

To answer RQ1, we performed a classification using an
existing framework from Alves et al. [12]. This framework

7https://atlasti.com

https://atlasti.com

provides basic types of technical debt, with high-level defini-
tions and a list of indicators per type. Using these types, we
annotated sentences within issues, referring to existing debt
or resolving debt. We read each sentence in issue summary,
description, and comments. If a sentence or a group of
sentences indicated a certain type of technical debt, we tagged
it with that type and relevant indicators.

The issues were independently annotated by the first and
second author. The differences between the two authors sup-
ported refining the types and indicators of technical debt from
the original framework of Alves et al. [12]. For example, we
added the indicator Requirements Partially Implemented to the
requirement debt type. The refined classification framework
that resulted from this step is presented in Table III. The
Reused column refers to whether the indicators are reused
directly from the study of Alves et al. (“•” symbol) or they
were created inductively during the qualitative analysis (“◦”
symbol). The original framework of Alves et al., can be found
in the replication package8. The classification resulted in 152
annotated statements with different technical debt types and
indicators, which are also available in the replication package.

To mitigate the risk of bias, we evaluated the level of
agreement between the classifications of the two authors using
Cohen’s kappa coefficient [13]; this is commonly used to mea-
sure inter-rater reliability. The calculated level of agreement
between the two authors is 0.757 based on a sample consisting
of 15% of all technical debt statements, which is considered
excellent according to the work of Fleiss et al. [13].

Next, we revisited all identified technical debt to obtain
information to answer RQ2 and RQ3. More specifically,
for RQ2, we annotated text with information regarding the
identification of technical debt items within the issue life
cycle. Regarding RQ3, for each technical debt item, we read
the related issue comments and the corresponding commit
messages (see Section IV-C) to identify information on debt
remediation. If indeed there was such information, we noted
it down, as well as the person who resolved the item and the
time between reporting and resolving it.

V. RESULTS

A. (RQ1) What types of technical debt are reported?

We found eight types of technical debt in issues: architec-
ture, build, code, defect, design, documentation, requirement,
and test debt. For each type we found one or more indicators.
In the following paragraphs, we report on the associated
indicators for each type, also providing a quote from actual
issues to exemplify each indicator.
Architecture debt: problems that are architecturally signifi-
cant, i.e. they are hard to change. Most of the debt in this type
relates to the indicator Violation of Modularity.

“It would be good if these were moved into their
own module...” - [Camel-4543]

8http://www.cs.rug.nl/search/uploads/Resources/li soliman avgeriou
seaa2020.zip

Some architecture debt is caused by Using Obsolete Tech-
nology.

“The camel-atom component is using an ancient
incubator version of abdera which will make it hard
to work with camel-cxf.” - [Camel-4132]

Build debt: issues that make building (i.e. source code com-
pilation to artifacts) harder or more time-consuming. Most of
the identified build debt is caused by Over- or Under-Declared
Dependencies.

“Avoid the redundant direct dependency on log4j by
the components.” - [Camel-4331]
“Compiling for Fedora revels a missing declaration
for javax.annotation.Nullable. This is the result of a
missing explicit dependency on...” - [Hadoop-10067]

The rest of build debt is caused by Poor Deployment
Practice.

“Rationalize the way architecture-specific sub-
components are built with ant in branch-1. This is
a matter of maintainability and understandability,
and therefore robustness under future changes in
build.xml.” - [Hadoop-8364]

Code debt: issues in source code, which negatively influence
the maintenance of software. Most of the code debt is caused
by Low-Quality Code.

“This will lead to very unmaintainable code. We
absolutely do not want to have nested retries for
different contexts.” - [Hadoop-3198]

A few code debt items result from Slow Algorithm.
“#query() does O(N) calls LinkedList#get() in a
loop, rather than using an iterator. This makes query
O(Nˆ2), rather than O(N).” - [Hadoop-8866]

Multi-Thread Correctness is another factor causing code
debt.

“EnsureInitialized() forced many frequently called
methods to unconditionally acquire the class lock.”
- [Hadoop-9748]

The rest of the code debt is caused by Dead Code, Dupli-
cated Code, and Complex Code.

“As we don’t use the CxfSoap component any more,
it’s time to clean it up.” - [Camel-2535]
“I am concerned about the code duplication this
brings.” - [Hadoop-6381]
“...can be simplified to the following so there aren’t
so many return statements to track.” - [Hadoop-
10169]

Defect debt: known defects that are deferred to be fixed. All
defect debt items are caused by Uncorrected Known Defects.

“This works in 2.12.x onwards. Hunting this down
on 2.11.x is low priority. End users is encourage to
upgrade if they really need this.” - [Camel-6735]

Design debt: shortcuts or non-optimal decisions taken in
detailed design. All design debt results from Non-Optimal
Decisions.

http://www.cs.rug.nl/search/uploads/Resources/li_soliman_avgeriou_seaa2020.zip
http://www.cs.rug.nl/search/uploads/Resources/li_soliman_avgeriou_seaa2020.zip

“Instead of passing a long[] you should pass a struct
that implements Writable.” - [Hadoop-481]
‘Extending the Trash API might be ok in the short
term but does not sound too appealing from a long-
term perspective.” - [Hadoop-2815]

Documentation debt: when the software is modified, the
documentation is not updated to reflect the changes or the
quality of updated documentation is low. Most of this type of
debt is caused by Outdated Documentation.

“The maven reports is just getting to old and inter-
mixed with 1.x and trunk releases.” - [Camel-1846]

The second indicator is Low-Quality Documentation.
“I agree to improve documentation to make it clear
that...” - [Hadoop-12672]

Requirement debt: when the requirements specification is not
in line with the actual implementation. Some requirement debt
is caused by Requirements Partially Implemented.

“The only feature which we don’t support is corre-
lated message groups. That requires a bit more work
and also may complicated...” - [Camel-1669]

Another common cause concerns Non-Functional Require-
ments Not Being Fully Satisfied. In the example below, con-
currency is not fully satisfied.

“Definition requires the implementations for its in-
terfaces should be thread-safe. HarFsInputStream
doesn’t implement these interfaces with tread-safe,
this JIRA is to fix this.” - [Camel-5587]

Test debt: shortcuts or non-optimal decisions taken in testing
that negatively affect maintainability. Most test debt is caused
by Lack of Tests.

“There are no XQuery specific tests.” - [Camel-201]
The other major cause of test debt is Low Coverage.

“Some of the test code doesn’t check for correct er-
ror codes to correspond with the wrapped exception
type.” - [Hadoop-11103]

Finally, some test debt results from Expensive Tests.
“I see recent hadoop-hdfs test runs have been taking
2.5 hours. This one (new patch) was 45 minutes.” -
[Hadoop-11670]

Table IV presents an overview of technical debt types and
indicators in the examined issues. We observe that code,
documentation, and test debt are the three most common types
(with 38.8%, 21.7%, and 18.4% respectively). Furthermore,
the three most common indicators are Low-quality Code, Lack
of Tests, and Outdated Documentation.

Finally, since we annotated technical debt on the sentence
level (instead of the issue level), an issue may contain more
than one types of technical debt. Table V presents how many
issues contain zero, one or more types of technical debt in
issues. As we can see, 24 out of 117 issues (20%) that contain
technical debt, contain more than one type. This validates our
choice to analyze issues at the level of sentences; if we had

9The symbol # refers to the number of instances.

TABLE IV
TYPES AND INDICATORS OF TECHNICAL DEBT.

Type Indicator #9 #9 %
Architecture

debt
Violation of modularity 8

10 6.6
Using obsolete technology 2

Build debt
Over- or under-declared dependencies 5

6 3.9
Poor deployment practice 1

Code debt

Complex code 2

59 38.8

Dead code 12
Duplicated code 6

Low-quality code 36
Multi-thread correctness 1

Slow algorithm 2
Defect debt Uncorrected known defects 4 4 2.6
Design debt Non-optimal decisions 8 8 5.3

Documentation
debt

Low-quality documentation 16
33 21.7

Outdated documentation 17

Requirement
debt

Requirements partially implemented 3
4 2.6Non-functional requirements not

being fully satisfied 1

Test debt
Expensive tests 1

28 18.4Lack of tests 20
Low coverage 7

performed the analysis at the level of issues, we would have
missed the additional technical debt types per issue.

TABLE V
NUMBERS OF TYPES OF TECHNICAL DEBT IN ISSUES.

Issue description # Issues % Issues
Does not contain technical debt 383 76.6

Contains one type of technical debt 93 18.6
Contains two types of technical debt 21 4.2

Contains three types of technical debt 2 0.4
Contains four types of technical debt 1 0.2

Eight types of technical debt are found in issue trackers:
architecture, build, code, defect, design, documentation,
requirement, and test debt. The three most common types
are code, documentation, and test debt (i.e. 38.8%, 21.7%,
and 18.4%). About one fifth of the issues that contain
technical debt, contain more than one type.

B. (RQ2) When do software engineers identify technical debt?

We observed three distinct cases of technical debt being
identified in issue trackers:

1) Identifying technical debt before creating an issue (i.e.
debt is the reason for creating the issue): When devel-
opers spot an existing technical debt item in the system,
they report it in an issue tracker to be resolved. For
instance, a developer found low-quality code, which
complicates debugging; thus, he/she created a new issue:

“If the user doesn’t setup the right camel context
for the context component. The exception we got
is misleading, we need to throw more meaningful
exception for it.” - [Camel-5714]

2) Identifying technical debt during code review: As ex-
plained in Section III, software engineers perform code
reviews by creating and reviewing code patches in issue
trackers. When a code reviewer identifies technical debt
items in a code patch, he/she discusses it with other
developers to determine, if the identified technical debt
should be resolved or committed to the system. For
example, during a code review, a developer found that a
shortcut was taken. Thus, he/she commented on a patch:

“The patch looks good to me... It would be better if
we can add an upper limit for the size of the GSet.”
- [Hadoop-9763]

3) Identifying technical debt after a patch is committed:
Technical debt can exist in a patch but go undetected
through the code review; after the patch is committed, a
developer may notice the debt in the commit and report
it. For instance, after a command patch is committed to
the repository, a developer noticed that documentation
is not updated accordingly:

“We need to update the documentation with the new
command.” - [Camel-8101]

TABLE VI
TECHNICAL DEBT IDENTIFICATION CASES.

Project # Identified Case 1 Case 2 Case 3
#9 % #9 % #9 %

Hadoop 101 41 40.6 57 56.4 3 3.0
Camel 51 27 52.9 13 25.5 11 21.6
Total 152 68 44.7 70 46.1 14 9.2

To gain a better understanding of how technical debt is
identified, Table VI presents the count of technical debt
items for the three aforementioned cases. Clearly, the first
and second cases represent the majority (44.7% and 46.1%
respectively) in these projects. Compared with Camel, there is
30.9% more debt introduced in Hadoop with the second case
and 18.6% less debt introduced with the third case. This means
that more technical debt is identified during code reviews (on
patches) than after the patch is committed in the system in
Hadoop compared with Camel.

TABLE VII
TECHNICAL DEBT REPORTERS.

Project Reported by creators Reported by others
#9 % #9 %

Hadoop 4 6.7 56 93.3
Camel 7 29.2 17 70.8
Total 11 13.1 73 86.9

Moreover, we also investigate who reported the debt: the
developers who created it in the first place or those who
discovered it. Since technical debt identified in the first case
already exists in the system, information on who created it
is not contained in issue trackers; thus, such information is

obtained only for technical debt identified in the second and
third cases. Table VII presents an overview on who reported
the technical debt. We find that on average most of the debt is
reported by other developers (i.e. 86.9%), and a small part is
self-reported (reported by those that created it). Camel has a
higher percentage of self-reported debt than Hadoop, but the
vast majority of its debt is still reported by others (i.e. 70.8%
versus 29.2%). This may mean that most developers create
technical debt unintentionally.

There are three cases of identifying technical debt in issue
trackers: discovering existing debt and creating an issue
for it, identifying debt in a patch during code review, or
after the patch is committed in the system. Most of the
technical debt is identified in the first and second cases.
A small part of the debt is reported by its creators, while
most is reported by other developers.

C. (RQ3) How do software engineers resolve technical debt?

1) (RQ3.1) How much technical debt is paid off?
Table VIII presents the amounts and percentages of technical
debt items that are identified and resolved. We can see that
most of the identified technical debt is actually resolved in
both Hadoop and Camel (i.e. 71.3% and 72.5%, respectively).
This indicates that, when technical debt is reported in issue
trackers, it will likely be resolved. In other words, most
software developers are conscious of the importance of paying
off technical debt items.

TABLE VIII
AMOUNT OF TECHNICAL DEBT THAT WAS REPAID.

Project # Identified # Repaid % Repaid % Remaining
Hadoop 101 72 71.3 28.7
Camel 51 37 72.5 27.5
Total 152 109 71.7 28.3

2) (RQ3.2) Who repays technical debt? As shown in
Table IX, we distinguish between developers who create
technical debt, those who identify it and other developers who
participate in resolving it. We can see that most of the technical
debt is repaid by those who identified it (i.e. 47.7%), and
those who created it (i.e. 44.0%); while only 8.3% debt is
resolved by other developers. This shows that developers take
the responsibility to pay off most of the technical debt they
identified or created themselves.

TABLE IX
WHO REPAID TECHNICAL DEBT.

Project # Repaid
Repaid by

Creators Identifiers Others
#9 % #9 % #9 %

Hadoop 72 36 50.0 33 45.8 3 4.2
Camel 37 12 32.4 19 51.4 6 16.2
Total 109 48 44.0 52 47.7 9 8.3

3) (RQ3.3) How long does it take to fix technical debt?
Fig. 2 shows the mean times, the median times, and the time
distributions of technical debt repayment for the two projects.
With a visual inspection, we see that the time spent to fix
technical debt in Hadoop and Camel varies. We also observe
that after the technical debt is reported (point zero in the y
axis), most of the fixes happened in a short time compared
to the average (67.0% of the debt is repaid in the first 100
hours).

Fig. 2. The time distribution of technical debt repayment in issue trackers.

Furthermore, we compare the time spent on resolving
technical debt by different developers (Creators, Identifiers,
and Others as discussed in Section V-C2). More specifically,
we compare repayment time distributions between pairs of
developers (e.g. between creators and identifiers) using the
Mann-Whitney test [14] and Cliff’s delta [15] to determine the
significance level and the effect size of the differences. The re-
sult is demonstrated in Table X. There are notable differences
between Hadoop and Camel. In Hadoop, the repayment time
of identifiers and others is longer than creators with statisti-
cal significance (p-values are 0.031 and 0.028 respectively).
Moreover, the time difference between identifiers and others

TABLE X
REPAYMENT TIME COMPARISON BETWEEN DIFFERENT DEVELOPERS

Project Average time spent on debt repayment (h) p-value Cliff’s delta
Creators Identifiers

Hadoop 128.0 1510.8 0.031 -0.303 (small)
Camel 174.5 142.3 0.935 0.021 (negligible)

Creators Others
Hadoop 128.0 5730.3 0.028 -0.777 (large)
Camel 174.5 3104.3 0.851 -0.069 (negligible)

Identifiers Others
Hadoop 1510.8 5730.3 0.080 -0.626 (large)
Camel 142.3 3104.3 0.463 -0.210 (small)

is at the margin of statistical significance (p-value is 0.080).
According to the effect size, we observe that the difference
between creators and identifiers is small, while the difference
between identifiers and others is large. Thus, technical debt in
Hadoop is paid back the quickest by creators, followed with
a small margin by identifiers, followed with a large margin
by others. In Camel, the situation is different as none of the
time differences is statistically significant. We only observe
that the repayment time of others is much longer (on average)
than creators and identifiers.

Most of the identified technical debt in issue trackers
is resolved (on average 71.7%). Debt identifiers and
creators pay off most of the technical debt (47.7% and
44.0% respectively). The median time and average time to
repay technical debt are 25.0 and 872.3 hours. In Hadoop,
technical debt creators resolve it quicker than those who
identify it or others.

VI. DISCUSSION

Various types of technical debt are detected in issues,
and they are complementary to those detected in source
code comments. Comparing the types of technical debt we
identified in issues (RQ1) against those types detected in
source code comments by Potdat and Shihab [3], we find
requirement, defect, design, test, and documentation debt
appearing in both. However, although documentation and test
debt are among the three most common types in issues, they
are the two least common types in source code comments.
Meanwhile, design debt is the most common type in source
code comments, but it is rather uncommon in issues. Finally,
code, build, and architecture debt are only detected within
issues. This means that the types of technical debt detected
through issue trackers and source code comments have some
overlap but they are also sufficiently distinct. Thus, using each
source (issues or source code comments) has its strengths
and weaknesses. Therefore, we argue that the two sources are
complementary in detecting different types of technical debt.
Researchers should take both sources into account to increase
the completeness and accuracy of their detection tools.

Approaches are required to identify technical debt in
all three different cases (existing debt, during code review
or after committing a patch). Researchers should customize
the identification approaches according to the characteristics
of each case (see results of RQ1). For example the approach
proposed by Dai and Kruchten [5] can work for the first case
but not for the other two cases. Furthermore, the findings
show that only 13.1% of technical debt is reported by those
that created it. We suggest that researchers look into this
phenomenon and interview practitioners to find out why they
usually do not report their own debt. Furthermore, we advise
practitioners who deliberately incur technical debt, to report it
in the issue tracker. This would accelerate the repayment of
these debt items, even if that is performed by other developers.

Technical debt admitted in issues is resolved faster than
in source code comments. Considering the results obtained
from RQ3 in comparison with the study of Maldonado et
al. [7], we find that most of the technical debt is repaid or
removed (71.7% for debt within issues and 76.7% for debt in
code comments). Furthermore, a great percentage of technical
debt is repaid or removed by debt creators (44.0% for issues
and 54.4% for source code comments). This indicates that
developers consistently take care of SATD in both issues
and source code comments, and debt creators often take the
responsibility to resolve it.

Moreover, in Hadoop, it is noteworthy that debt creators
repaid technical debt the fastest, followed by identifiers, and
other developers. This is consistent with the intuition that
certain people are better able to resolve TD depending on
their familiarity with the problem at hand; creators being
the most familiar, followed by debt identifiers, and others.
Therefore, we suggest that, in order to pay off TD faster,
the repayment task should be assigned to debt creators. In
addition, comparing the TD repayment between issues and
source code comments [7], we observe that debt within issues
is resolved much quicker than in comments (i.e. for Hadoop,
median of 2.0 days versus 159.0 days; for Camel, 0.9 days
versus 18.2 days). Therefore, we suggest that developers report
TD that needs to be resolved immediately in issue trackers
instead of commenting it in the source code.

VII. THREATS TO VALIDITY

Threats to Construct Validity concern the correctness of
operational measures for the studied subjects. Since only a
small subset of issues in issue trackers contain technical debt
statements [4], the sample (500 analyzed issues) may not
represent the population (issues containing technical debt in
general). To minimize this threat, the analyzed sample was
obtained randomly from all collected issues.
Threats to Reliability concern potential bias from the re-
searchers in data collection or data analysis. Since issues are
written in natural language, they were identified and catego-
rized manually. To counter the threat of researchers biasing
the manual analysis, the first and second author annotated the
issue sample independently, and then discussed any differences
to reach consensus on the classification. Additionally, the level
of agreement (Cohen’s kappa) was 0.757, which indicates high
inter-rater agreement. Finally, as aforementioned all data are
publicly available in the replication package.
Threats to External Validity concern the generalization of
findings. In this study, we analyzed issues from two large open
source projects, which both use JIRA as the issue tracker.
Thus, our findings may be generalized to other open source
Java projects of similar size and complexity that use JIRA; we
can not claim any further generalization.

VIII. CONCLUSION

In this paper, we explored SATD in issue trackers. We found
eight types of technical debt: architecture, build, code, defect,

design, documentation, requirement, and test debt. Code, doc-
umentation, and test debt are the three most common technical
debt found in issue trackers. Furthermore, there are three cases
of identifying technical debt in issue trackers: discovering
existing debt and creating an issue for it, identifying debt in
a patch during code review, or after the patch is committed in
the system. Most of the technical debt is identified in the first
and second cases. Only 13.1% of technical debt is reported by
debt creators.

For technical debt repayment, we found that on average
71.7% of identified debt is repaid, and most of it is paid
by debt identifiers and creators (i.e. 47.7% and 44.0%). The
median time and average time of debt repayment are 25.0 and
872.3 hours respectively. Our results show that in Hadoop, the
repayment time by creators is statistically significantly shorter
than that of identifiers and others. However, in Camel, we
did not observe statistically significant differences between
different types.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016.

[2] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull,
and C. Seaman, “Identification and management of technical debt:
A systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100–121, 2016.

[3] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD). IEEE, 2015, pp. 9–15.

[4] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical debt?
surfacing elusive technical debt in issue trackers,” in 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR).
IEEE, 2016, pp. 327–338.

[5] K. Dai and P. Kruchten, “Detecting technical debt through issue track-
ers.” in QuASoQ@ APSEC, 2017, pp. 59–65.

[6] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 91–100.

[7] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik, “An
empirical study on the removal of self-admitted technical debt,” in 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2017, pp. 238–248.

[8] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal? an in-depth perspective,” in
2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 2018, pp. 526–536.

[9] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) approach,” in Encyclopedia of Software Eng.
Hoboken, NJ, USA: John Wiley & Sons, Inc., jan 2002, pp. 528–532.

[10] S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on
performance bugs,” in 2012 9th IEEE working conference on mining
software repositories (MSR). IEEE, 2012, pp. 199–208.

[11] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[12] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in 2014 Sixth
International Workshop on Managing Technical Debt. IEEE, 2014,
pp. 1–7.

[13] J. L. Fleiss, B. Levin, M. C. Paik et al., “The measurement of interrater
agreement,” Statistical methods for rates and proportions, vol. 2, no.
212-236, pp. 22–23, 1981.

[14] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[15] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

