
1

Self-Admitted Technical Debt in the Embedded
Systems Industry: An Exploratory Case Study

Yikun Li, Mohamed Soliman, Paris Avgeriou, and Lou Somers

Abstract—Technical debt denotes shortcuts taken during software development, mostly for the sake of expedience. When such
shortcuts are admitted explicitly by developers (e.g., writing a TODO/Fixme comment), they are termed as Self-Admitted Technical
Debt or SATD. There has been a fair amount of work studying SATD management in Open Source projects, but SATD in industry is
relatively unexplored. At the same time, there is no work focusing on developers’ perspectives towards SATD and its management. To
address this, we conducted an exploratory case study in cooperation with an industrial partner to study how they think of SATD and
how they manage it. Specifically, we collected data by identifying and characterizing SATD in different sources (issues, source code
comments, and commits) and carried out a series of interviews with 12 software practitioners. The results show: 1) the core
characteristics of SATD in industrial projects; 2) developers’ attitudes towards identified SATD and statistics; 3) triggers for practitioners
to introduce and repay SATD; 4) relations between SATD in different sources; 5) practices used to manage SATD; 6) challenges and
tooling ideas for SATD management.

Index Terms—technical debt, self-admitted technical debt, mining software repositories, source code comment, issue tracking system,
commit, empirical study

F

1 INTRODUCTION

Technical debt (TD) refers to compromising the long-term
maintainability and evolvability of software systems by se-
lecting sub-optimal solutions, in order to achieve short-term
goals [1]. When software developers incur technical debt,
they sometimes explicitly admit it; for example, software
developers may write TODO or Fixme in a source code com-
ment, indicating a sub-optimal solution in that part of the
code. Potdar and Shihab [2] called these textual statements
Self-Admitted Technical Debt (SATD). SATD can be found in
several sources such as source code comments [2], issues in
issue tracking systems [3], [4], and commit messages [5].

The SATD that can be identified in such sources is
complementary to the technical debt that can be identified in
source code through static analysis. This is because, certain
types of technical debt cannot be identified by analyzing
source code. For example, partially implemented requirements
is a type of requirement debt [4] that can be identified from
source code comments or issue tracking systems but not
from running source code analysis tools: “TODO: This class
only has partial Undo support (basically just those members that
had it as part of a previous implementation) [from Apache Ar-
goUML1].” Therefore it is important to identify and further

• Yikun Li, Mohamed Soliman, Paris Avgeriou are with the Bernoulli
Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, The Netherlands.
E-mail: {yikun.li, m.a.m.soliman, p.avgeriou}@rug.nl

• Lou Somers is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands.
E-mail: l.j.a.m.somers@tue.nl

Manuscript received; revised. This work was supported by ITEA3 and RVO
under grant agreement No. 17038 VISDOM (https://visdom-project.github.
io/website).

1. https://github.com/argouml-tigris-org/argouml/blob/
d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/
src/org/argouml/notation/NotationSettings.java#L108

manage SATD, in addition to the more traditional approach
of managing technical debt in source code.

There has been a fair amount of work investigating the
identification [6], [7], measurement [8], prioritization [9],
and repayment [10], [11] of SATD. However, to the best
of our knowledge, all previous studies (but one, namely
[5]) identified SATD in open-source projects; we actually
know little about SATD in industrial projects. Moreover,
none of the previous studies has surveyed software devel-
opers about SATD, in order to capture their perspectives
towards SATD management, and tooling support for dif-
ferent sources. Without involving software developers to
investigate SATD, researchers risk developing theories or
approaches, which do not align with the needs and practices
of software engineers.

To address these shortcomings, we conducted an ex-
ploratory case study in collaboration with an industrial
partner to investigate how SATD is managed and how this
can be supported. We collected data in two steps. First, we
identified and characterized SATD in projects within that
company from three sources: issues, source code comments,
and commits. This step took place by using pre-trained
machine learning models [12]. Second, we carried out a
series of interviews with 12 software practitioners from that
organization to understand their perception of what SATD
really is, how it is managed, and how this management
can be potentially improved. The contributions and main
findings of this study are summarized as follows:

• Characterizing SATD in industrial projects. The re-
sults indicate that most technical debt is admitted in
issues, followed by source code comments and com-
mit messages. Non-SATD issues take a significantly
shorter time to close, compared to SATD issues.

• Reporting developers’ attitudes towards identified

https://visdom-project.github.io/website
https://visdom-project.github.io/website
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108
https://github.com/argouml-tigris-org/argouml/blob/d5cd45cb4409c6f50747a3a2671219111b443c48/src/argouml-app/src/org/argouml/notation/NotationSettings.java#L108


2

SATD and statistics. Most interviewees acknowl-
edged the identified SATD. However, they do need
more information to assess the importance of indi-
vidual SATD items.

• Reporting relations between SATD from different
sources. We found that SATD in code comments and
issues is referenced in the other sources, while SATD
in commits is not referenced in other sources.

• Reporting triggers on SATD introduction and re-
payment. The results show developers have different
reasons to introduce and pay back SATD, depending
on the data source (code comments, issues, commits).

• Reporting practices used to manage SATD. We sum-
marize and report practices that are used to assist in
SATD prioritization and repayment.

• Reporting tooling support for SATD management.
We report tool features that developers suggested as
useful for SATD identification, traceability, prioriti-
zation, and repayment.

The rest of this paper is organized as follows. Section 2
discusses related work. The case study design is elaborated
in Section 3. Section 4 presents the results, and Section 5
discusses the implications of these results on researchers
and practitioners. Finally, threats to validity are evaluated
in Section 6 and conclusions and future work are drawn in
Section 7.

2 RELATED WORK

To facilitate comparison to our work, we split the related
work into two parts: work associated with SATD in Open-
Source Software and work associated with SATD in indus-
trial settings.

2.1 SATD in Open-Source Software
Potdar and Shihab [2] were the first to study SATD in source
code comments. They analyzed four open-source projects
and identified SATD in them. They found that 2.4% to 31%
of source files contain SATD comments and only 26.3% to
63.5% of SATD are removed after introduction. Moreover,
the results of Potdar and Shihab show that experienced
developers tend to introduce more SATD compared to in-
experienced developers. Building on this work, Maldonado
and Shihab [13] focused on the types of SATD in open-
source projects. They analyzed 33K code comments from
five projects and categorized SATD into five categories:
design, requirement, defect, documentation, and test debt.
The results indicated that design debt is the most common
type of SATD, as 42% to 84% of classified SATD is design
debt.

Subsequently, there was a significant focus on automatic
SATD identification. Maldonado et al. [6] manually classi-
fied source code comments into different types of SATD
from ten open-source projects and utilized the maximum
entropy classifier to automatically identify design debt
and requirement debt. Similarly, Huang et al. [14] used
the feature selection method to select the most important
features and adopted the ensemble learning technique to
leverage different machine learning approaches to accu-
rately identify SATD, again from source code comments.

Furthermore, different machine learning approaches were
applied to achieve higher predictive performance for SATD
identification. Specifically, Ren et al. [7] proposed a Con-
volutional Neural Network-based approach to accurately
identify SATD from source code comments. Wang et al. [15]
proposed an attention-based neural network to automati-
cally detect SATD. In addition to using source code com-
ments, few studies focused on identifying SATD from other
sources. Dai and Kruchten [3] manually analyzed 8K issue
tickets and used the Naive Bayes method to classify SATD
issues and non-SATD issues. In our previous work [16], we
examined 23K issue sections and proposed a Convolutional
Neural Network-based approach to identify SATD from
issue tracking systems.

In addition to SATD identification, there has been work
related to the measurement, prioritization, and repayment
of SATD. Kamei et al. [8] explored ways to measure the inter-
est of SATD and suggested using LOC and Fan-In measures.
The results indicated that 42.2% to 44.2% of SATD incurs
positive interest (i.e. technical debt costs more to repay in the
future), while 8.1% to 13.8% of SATD incurs negative interest
(i.e., technical debt costs less to pay back in the future).
Mensah et al. [9] introduced a SATD prioritization scheme
which consists of identification, examination, and rework
effort estimation. The results showed that a rework effort
of modifying 10 to 25 commented LOC per SATD source
file is required for highly prioritized SATD tasks. Besides,
Maldonado et al. [10] analyzed five open-source projects to
investigate the repayment of SATD. The results indicated
that most of SATD is removed eventually and the payback
is mostly done by those that incurred the SATD in the first
place. They also found that SATD lingers in the code for
approximately 18 to 172 days. In a similar study, Zampetti
et al. [11] looked into how SATD is resolved in five open-
source projects. They found that between 20% to 50% of
SATD comments are removed by accident, and 8% of SATD
repayment is documented in commit messages.

Compared to all aforementioned studies, our study has
the following differences: a) we utilized machine learning
models to identify and characterize SATD; b) we performed
this analysis on a number of different sources, instead of
only one; c) we work in an industrial setting instead of open-
source systems; d) we explored developers’ perspectives
towards both the nature of SATD and its management.

2.2 SATD in Industrial Settings

SATD in industrial settings is relatively unexplored; there is
only one work that studied SATD in industrial settings and
compared it with open-source settings [5]. Specifically, Zam-
petti et al. surveyed 52 industrial developers and 49 open-
source project contributors. They focused on technical debt
admitted in source code comments and found that technical
debt annotation practices and the typical content of SATD
comments are similar in industrial and open-source settings.
Furthermore, the results showed that admitted technical
debt in industrial projects is implicitly discouraged by the
fear of taking on responsibilities. The results indicated that
technical debt is also admitted in other sources, including,
among others, commit messages, pull requests, and issue
trackers.



3

In contrast to Zampetti et al. [5], who only investigated
source code comments, we focus on analyzing SATD from
multiple sources (i.e., source code comments, commit mes-
sages, and issue tracking systems). In addition, we use
machine learning techniques to identify SATD from differ-
ent sources in industrial settings, demonstrate the charac-
teristics of SATD, and present the interviewees’ attitudes
towards the identified SATD and statistics. Finally, we also
study the process of managing SATD, as well as how to
improve it from the point of view of software practitioners.

3 STUDY DESIGN

3.1 Objective and Research Questions
The goal of this study, formulated according to the Goal-
Question-Metric [17] template is to “analyze self-admitted
technical debt in source code comments, issue tracking systems,
and commit messages for the purpose of understanding and im-
provement with respect to the nature and management process of
self-admitted technical debt in practice from the point of view
of software engineers in the context of the embedded systems
industry.” To be more precise, we aim at understanding both
the nature of SATD per se and the process of managing it, as
well as improving this process. Consequently, we formulate
three main research questions (RQs) that are further refined
into sub-questions. In Section 4 we will not answer the main
RQs directly, but only indirectly through answering the sub-
questions.

• RQ1: What is the nature of SATD in industry?

◦ RQ1.1: What are the types, amounts, resolution
time, and sources of SATD items in industrial
settings?
Rationale: There are significant differences
between open-source projects and industrial
projects concerning project management, tool-
ing, as well as collaboration and communica-
tion [18], [19]. Thus, developers may admit
technical debt differently in the two cases.
Meanwhile, as mentioned in Section 2, all
(but one, namely [5]) previous studies on
SATD have focused on open-source projects.
Thus, determining the types of SATD (e.g.
requirements, design, code debt), amount of
SATD (i.e. number and percentages of SATD
items), and the sources of SATD (e.g. issue
tracker or source code comments) in indus-
trial projects, and comparing them with open-
source projects could help researchers under-
stand what SATD looks like in practice, and
practitioners to better manage SATD in both
cases.

◦ RQ1.2: How is automatically identified SATD re-
garded by professional software engineers?
Rationale: The identification of SATD can be
automated, e.g. by using machine learning
techniques [7], [16]. However, as far as soft-
ware engineers are concerned, the identified
SATD items could be obsolete, inaccurate, ir-
relevant, or inconsistent with the code. We aim
at understanding how far software engineers

consider that the SATD items are indeed im-
portant and relevant for their system. We also
want to understand whether software engi-
neers agree with the main statistics of the iden-
tified SATD (e.g. percentage of backlog items
and the lifetime of SATD items). This can help
us understand the strengths and weaknesses
of automated SATD identification.

◦ RQ1.3: What are the relations between SATD in
different sources?
Rationale: The different sources where SATD
is documented (e.g. source code, issues,
commits), are implicitly or explicitly related
to each other. Thus, developers sometimes
choose to document the same technical debt
in more than one source. For example, when
developers encounter SATD in code comments
and they consider this debt as important, they
might document it in issue tracking systems
for more exposure and visibility. In these cases,
we are interested in understanding the con-
nections between the SATD items in these
different sources. This can assist in improving
the traceability of SATD in different sources.

• RQ2: How is SATD being managed in industry?

◦ RQ2.1: When is technical debt (not) admitted in
source code comments, issue tracking systems, and
commit messages?
Rationale: It is important to understand the
reasons for documenting or not documenting
technical debt in different sources. This can
help researchers in coming up with guide-
lines and practices for SATD documentation.
Furthermore, this could help develop tools to
assist in documenting SATD.

◦ RQ2.2: What are the pros and cons of admitting
technical debt in different sources?
Rationale: Each source has its advantages and
disadvantages in terms of documenting tech-
nical debt. For example, technical debt that
is admitted in code comments, allows devel-
opers reading those comments to also exam-
ine the problem in the adjacent code. On the
downside, SATD in code comments has lim-
ited visibility for team leads and project man-
agers and typically does not get added to the
backlog. Understanding the pros and cons of
different sources for documenting SATD could
help developers make better use of different
sources to document technical debt.

◦ RQ2.3: What are the triggers to pay back or not
pay back SATD?
Rationale: Developers are more likely to pay
back SATD in certain cases. We plan to in-
vestigate the developers’ motivation both for
repayment and for deciding to leave SATD in
the system. This could help researchers un-
derstand the reasons for SATD repayment and
develop a tool to assist practitioners in paying
back TD.



4

Git Repository

Identified SATD 
 Issue Tracker Identification of SATD

Using Machine Learning
Models

ProcessDatabase Data Flow Direction

Collecting
Background
Information

Individual
Interviews

Analyzing Interviews
Using Constant

Comparative Method

Interviews

Answering RQ1.1

Final Coding 

Mining Software Repositories

Data Collection

Collecting Issues

Collecting Commits

Extracting Code Comments

Data Analysis

Answering RQ1.2
to RQ 3.2

Answering RQs

Fig. 1. The framework of our approach.

◦ RQ2.4: What practices are used to support SATD
management in industrial settings?
Rationale: While, a number of studies have
investigated TD management in industry, we
know very little about managing self-admitted
TD. This RQ can help in understanding the
current practices of SATD management in
industrial settings. For example, developers
could group similar SATD to facilitate the
SATD repayment. Software practitioners may
be able to use some of these practices in their
own context, while researchers may investi-
gate ways of supporting them.

• RQ3: How can we improve SATD management?

◦ RQ3.1: What challenges do software practitioners
face when managing SATD?
Rationale: Understanding the challenges of
SATD management can help researchers to
provide support for addressing those chal-
lenges. For example, prioritization of technical
debt items is a typical challenge in any kind of
technical debt, including self-admitted. If we
obtain an in-depth understanding of why it is
difficult to prioritize SATD in specific, we are
in a better position to propose practices, tools,
or guidelines to address this challenge.

◦ RQ3.2: What features should tools have to effec-
tively manage SATD?
Rationale: As mentioned in Section 2, there are
tools supporting SATD identification. How-
ever, we currently lack tools to assist in other
activities of SATD management such as pri-
oritization or repayment [20]. Answering this
question can support the development of new
tools or the improvement of existing ones that
could help practitioners better and easier man-
age SATD.

Fig. 1 presents the overall framework of our approach to
answering the research questions. The two major processes

(i.e., data collection and data analysis) are elaborated in the
following sub-sections.

3.2 Cases and Units of Analysis
This case study is designed as a single embedded case study
[21]. Our case is a large software company in the embedded
systems industry that chooses to remain anonymous. The
software development in this company adopts Scrum de-
velopment practices.

Because we focus on understanding SATD and its man-
agement process, as well as improving the latter, we col-
lected data from two types of units. The first type of unit
is software artifacts, including source code, commits, and
issue tracking systems. It is noted that the studied projects
mainly use C++ and XML files. There are, on average, 20
software engineers working on the analyzed projects. We
identified and analyzed the nature of SATD from these soft-
ware artifacts. The second type of unit is software engineers
that participated in the development of a specific project.
More specifically, each engineer represents a single unit.
We conducted interviews with software engineers to derive
their opinions on the aforementioned SATD nature, as well
as to understand and improve SATD management. Details
about the background of the practitioners are presented in
Table 2.

3.3 Data Collection
As seen in Fig. 1, data is collected through analysis of work
artifacts and interviews, which are third- and first degree data
collection methods respectively, according to Lethbridge et
al. [22]. These two methods are explained in the following
subsections in detail.

3.3.1 Analysis of Work Artifacts
In order to answer the research questions, we choose a large-
scale industrial project which contains eight sub-projects.
More specifically, the selected project has over 475K lines
of comments, 21K commits, and 130K files (including doc-
umentation, test files, configuration files, etc.). Regarding
issues, we collected 78K issues from the issue tracking



5

TABLE 1
Questions for Individual Interviews.

Question Related RQs
Do you acknowledge the identified SATD items from the different sources? RQ1.2
Do you consider identified SATD items to be important? RQ1.2
What do you think of different types of SATD? RQ1.2
What do you think about the average time to close different types of SATD issues and non-SATD issues? RQ1.2
Do these SATD items and statistics give you new information or insights about this project? RQ1.2
What do you think are the relations between TD documented in different sources? RQ1.3
Do you record TD in your project? RQ2.1, RQ2.2
Which TD items do you usually record and which do not? RQ2.1, RQ2.2
Where do you typically record TD? RQ2.1, RQ2.2
Do you have any constraints on recording TD? RQ2.1, RQ2.2
Which types of TD do you usually record? RQ2.1, RQ2.2
What do you think are the differences between TD documented in different sources? RQ2.1, RQ2.2
How do you decide on resolving one of the recorded TD items? RQ2.3
How do you manage the recorded TD items in practice? RQ2.4
How do you prioritize documented TD items in practice? RQ2.4
What strategies do you follow to pay back documented TD? RQ2.4
What challenges do you encounter when you manage recorded TD? RQ3.1
What features would you like to have from an ideal tool to manage SATD? RQ3.2

system. We note that, all embedded software in the selected
company uses the same issue tracking system; thus, the
collected issues come from all embedded software while
comments and commits are from the selected project where
we had access. Because we focus on three different types of
work artifacts, namely source code comments, issue track-
ing systems, and commits, we obtained data from these
different sources separately. For source code comments,
we created a script to first retrieve all code changes in
git and then extract all source code comments using the
CommentParser tool2. We manually verified the correctness
of the extracted comments with this tool before collecting
the data. For issue tracking systems, we extracted all issue
descriptions for analysis using the API of the issue tracker
used by the company (Microsoft TFS). Lastly, for commits,
we obtained all commit descriptions in git. The scripts for
collecting data are included in the replication package3. We
analyzed the latest version of the selected industrial project
on July 7th, 2021.

3.3.2 Interviews

We have conducted semi-structured interviews to collect
data from practitioners and answer the research questions.
Semi-structured interviews were selected as they are an ef-
fective approach to exploring participants’ thoughts and ex-
periences in depth [23]. Regarding the interviewee selection,
we aimed at recruiting participants that have different roles
in the organization and have extensive experience in dealing
with technical debt; these characteristics would allow us
to explore the SATD management process and its tooling
support from different perspectives (see Section 3.1). Thus,
the contact person at the company selected and invited the

2. https://github.com/jeanralphaviles/comment parser
3. https://github.com/yikun-li/satd-in-industry

interviewees based on these characteristics from approxi-
mately 60 embedded software engineers. These invitations
were accepted by 12 practitioners.

Before the interviews, we extracted work artifacts from
the selected project as aforementioned and identified SATD
from them, as illustrated in Fig. 1. Then we selected a sample
of 15 SATD items, to show to the practitioner in order to
help them gain a basic understanding of what automatically
identified SATD looks like and prepare for the interviews.
The sample of 15 SATD items was selected from the set of
identified SATD items in the previous step based on the
proportion of different types of SATD, and consisted of 5
items from source code comments, 5 items from commit
messages, and 5 items from issues. For example, two of
the presented SATD items were: “stupid code, why isn’t this
part of [function name]?” and “adding sanity check on timing.”
Besides, we provided practitioners with an introductory
document on SATD (including a definition and examples
of SATD as well as the high-level goal of this study).

Practitioners were then interviewed one by one by at
least two of the authors via a web-based platform. We
asked practitioners to answer questions relating to their
background, namely their role in the company and years
of experience. This background information is presented in
Table 2. After the background information collection step,
we asked interviewees some introductory questions (e.g.,
What is your understanding of technical debt? Can you tell
me some examples of technical debt?). These “warm-up”
questions encouraged interviewees to think about their own
experiences with technical debt so that they can answer the
rest of the questions based on those experiences. During
the interviews, we provided statistics on SATD (such as
numbers and percentages of different types of SATD from
different sources) in the selected project and the sample of
identified SATD items. Practitioners were asked to think

https://github.com/jeanralphaviles/comment_parser
https://github.com/yikun-li/satd-in-industry


6

TABLE 2
Background information of interview participants.

Interviewee ID Role in the Company Years of
Experience

I1 Architect 22
I2 Architect 19
I3 Architect 20
I4 Software developer 22
I5 Software developer 22
I6 Software developer 20
I7 Software developer 32
I8 Software developer 17
I9 Team lead 18
I10 Software developer 34
I11 Team lead 32
I12 Project manager 24

about the SATD examples and statistics before answering
interview questions. Finally, the main part of the inter-
view consisted of several questions aimed at answering
the Research Questions (as shown in Table 1); these were
developed by following the interview guidelines of Seid-
man [24]. We asked the practitioners to talk about their
ideas and opinions freely without restrictions. During the
interviews, we also asked follow-up questions to delve into
their experiences and understanding. Each interview took
approximately 30 minutes. After obtaining permission from
interviewees, interviews were recorded to be transcribed for
analysis.

3.4 Data Analysis

3.4.1 Analysis of Work Artifacts
To identify SATD from work artifacts, we first collect data
from the selected projects, as discussed in Section III-C.
Subsequently, we followed the results of our previous work
[12] to identify SATD from different sources using a deep
learning approach. This work is the only one focusing on ac-
curately capturing SATD from different sources; specifically,
the trained deep learning model achieved an f1-score (i.e.,
the harmonic mean of precision and recall) of 0.666, 0.644,
0.557 when identifying SATD from source code comments,
commit messages, and issue tracking systems respectively.
Moreover, the machine learning model can identify four
types of SATD, namely code/design debt, requirement debt,
documentation debt, and test debt. Examples of each type
of SATD are presented in Table 3.

3.4.2 Interviews
To analyze the interviews, we first transcribed all interview
recordings. It is noted that one of the interviewees did not
grant us permission to record the interview, so this interview
was transcribed on the fly during the meeting. Then, we fol-
lowed an iterative qualitative data analysis process accord-
ing to the Constant Comparative method of Grounded Theory
[25], [26]. Specifically, the analysis process is composed of
three main steps. The first step is open coding, which breaks
the transcript text down to discrete textual segments, which

TABLE 3
Examples of different types of SATD.

Debt Type Example

Code/Design debt “Perl protocol handler could be more robust against
unrecognised types” - [from Thrift-issue]
“Need to add better handling for hz instance
cleanup.” - [from Camel-issue]

Test debt “TODO: need more tests - [from
JMeter-code-comment]
“Tweaks tests to be a bit more robust” - [from
TrafficServer-commit]

Doc. debt “FIXME: Document difference between warn and
warning” - [from JRuby-code-comment]
“we need to add it to the wiki page” - [from
Camel-issue]

Req. debt “TODO: add a dynamic context... - [from
Heron-code-comment]
“Union is not supported yet... I might be adding
that capability quite soon.” - [from Samza-pull]

are subsequently coded (i.e. labeled). When reading the
interview transcripts, we continuously added new codes or
changed current codes when necessary. The scope of codes
varies, as it could be a phrase, a sentence, or a paragraph.
Second, we applied selective coding, by constantly comparing
different codes and annotations, and then merging similar
codes. Third, we worked on the theoretical coding to establish
conceptual relations between codes.

To ensure the agreement on codes, the first and second
authors independently performed the Constant Comparative
analysis process, discussed, and compared the generated
codes to eliminate bias. Any disagreements between the two
authors were subsequently resolved.

We used a professional qualitative analysis tool (AT-
LAS.ti4) to analyze the interview data. The analysis results
and interview protocol are available in the replication pack-
age3.

4 RESULTS

4.1 (RQ1.1) What Are the Types, Amounts, Resolution
Time, and Sources of SATD Items in Industrial Settings?
Table 4 presents the number of different types of SATD from
different sources. We can observe that most of the identified
SATD is code/design debt (79.1%), followed by documenta-
tion debt and requirement debt (9.5% and 7.7% respectively).
The least amount of identified SATD is test debt (3.7%).

4. https://atlasti.com

TABLE 4
Number of Different Types of SATD Items from Different Sources.

Debt Type
Source

Total
Comment Issue Commit

Code/Design debt 3,139 9,318 2,236 14,693
Req. debt 602 702 119 1,423
Doc. debt 225 1,350 199 1,774
Test debt 63 540 93 696
All SATD 4,029 11,910 2,647 18,586

https://atlasti.com


7

TABLE 5
Percentages of Different Types of SATD Items from Different Sources.

Debt Type
Source

Total
Comment Issue Commit

Code/Design debt 2.0% 12.8% 10.7% 5.9%
Req. debt 0.4% 1.0% 0.6% 0.6%
Doc. debt 0.2% 1.9% 1.0% 0.7%
Test debt 0.0% 0.7% 0.4% 0.3%
All SATD 2.6% 16.3% 12.7% -

As mentioned in Section III-C, the issues come from all of
the embedded software, while comments and commits are
only from one (large) project. Thus, we cannot compare the
absolute numbers of SATD items directly between sources.
Thus, we look into the percentages of items across the
different sources that contain SATD of different types (see
Table 5). It is noted that, in this and subsequent tables, the
highest values are highlighted in bold, while the lowest val-
ues are underlined. Specifically, we calculate the percentages
of different types of SATD by dividing the number of SATD
items of a specific type from a specific source by the number
of items from this source. We observe that the percentage
of issues or commits being SATD issues or commits is
significantly greater than source code comments (16.3%
and 12.7% versus 2.6%). Finally, the percentage of issues
being SATD is slightly greater than commits.

Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020 Jan 2021

0

2k

4k

6k

8k

10k

12k Issues
Commits
Code Comments

Number of technical debt admitted in Different Sources over Time

Date

N
um

be
r 

of
 S

AT
D

 I
te

m
s

Fig. 2. Cumulative number of SATD items in different sources over time.

Fig. 2 presents the number of cumulative technical debt
admitted in different sources over time. As can be seen,
software developers keep documenting technical debt in
different sources. At the beginning of the studied period
(before January 2017), the number of SATD in source code
comments is comparable with the number of SATD in
issues. Afterward, the rate of admitting technical debt in
issues increases compared to source code comments.

Because issue tracking systems provide additional infor-
mation (e.g., issue type, issue status, issue closed time) that
is related to SATD introduction and repayment, we further
investigate SATD in issue tracking systems. Specifically, we
investigate the time required to resolve issues (with and
without SATD), and the types of issues (e.g. backlog item
or bug) with SATD. These are presented in the rest of this
sub-section.

Table 6 presents the average time to close different types
of issues and the percentage of different types of issues that

TABLE 6
Average Time to Close Issues and Percentage of Closed Issues.

Type Avg. Time to Close (d) Pct. of Closed (%)
Code/Design debt 62.5 71.3

Req. debt 70.2 60.8
Doc. debt 60.4 72.0
Test debt 80.7 67.0

Non-SATD 47.2 75.5

are closed. As we can see, the average time to close different
types of issues varies: the average time to close non-SATD
issues is shorter (47.2 days) compared to different types of
SATD issues; test debt issues take the longest average time
to close (80.7 days). Moreover, non-SATD issues achieve the
highest closed rate (75.5%), while requirement debt issues
have the lowest closed rate (60.8%).

TABLE 7
Comparison of Average Time to Close Issues Between Different Types

of SATD and Non-SATD Issues.

Pairwise Comparison p-value Cliff’s Delta
Code/Design debt

& Non-SATD

1.1e-20 0.12 (small)
Req. debt 1.3e-4 0.24 (small)
Doc. debt 9.9e-4 0.20 (small)
Test debt 3.3e-7 0.19 (small)

Code/Design debt

& Test debt

0.014 0.07
Req. debt 0.361 -0.06
Doc. debt 0.020 -0.01

Non-SATD 3.3e-7 -0.19 (small)
Code/Design debt

& Doc. debt

0.641 0.07
Req. debt 0.160 -0.06
Test debt 0.020 0.01

Non-SATD 9.9e-4 -0.20 (small)
Code/Design debt

& Req. debt

0.247 0.12 (small)
Doc. debt 0.160 0.06
Test debt 0.361 0.06

Non-SATD 1.3e-4 -0.24 (small)
Req. debt

& Code/Design
debt

0.247 -0.12 (small)
Doc. debt 0.641 -0.07
Test debt 0.014 -0.07

Non-SATD 1.1e-20 -0.12 (small)

Specifically, to evaluate the significance level and the
effect size of closing time between different types of issues,
we choose Mann-Whitney test [27] and Cliff’s delta [28]. The
Mann-Whitney test is used to determine if two groups are
significantly different from each other and is widely used
in software engineering studies [4], [14]. The results are
demonstrated in Table 7, while the p-value is highlighted
when it is less than 0.05, which indicates the result has
statistical significance. We can notice that, in contrast to
previous research findings [29], there are significant dif-
ferences between the closing time of non-SATD issues
and different types of SATD issues (p-values are 1.1e− 20,
1.3e − 4, 9.9e − 4, and 3.3e − 7 respectively). Moreover,
according to the Cliff’s delta (i.e., 0.12, 0.24, 0.20, and 0.19



8

respectively), we can observe that the effect sizes5 between
them are all categorized as small [28]. Furthermore, closing
time differences between test debt issues and code/design
debt issues or documentation debt issues are statistically
significant (p-values are 0.014 and 0.020). However, their
effect sizes are negligible based on the Cliff’s delta (i.e., 0.07
and 0.01). As specified by the effect size in Table 7, we
find that the closing time differences between non-SATD
issues and different types of SATD issues are greater than
the closing time between different types of SATD issues.
Additionally, we compare the average time to close different
types of issues in Table 8. As we can see, except for test
issues, all other types of issues align with the finding that
SATD items take longer to solve. The reason for test issues
not following this trend, might be due to the insufficient
number of test issues in comparison to other types of issues
(247 vs. 885/4822/1333/4492).

TABLE 8
Average Time to Close Different Types of Issues.

Type
Issue Type

Feature Backlog
Item Bug Task Test

SATD 196.6 91.7 75.3 25.5 897.6
Non-SATD 186.6 75.9 68.0 19.4 1110.0

Next, we study the occurrence of the types of SATD
items (e.g. design or test debt) in the different types of
issues (e.g. backlog or bug). Issue tracking systems typically
provide a function that helps developers categorize and
track the progress of specific types of work [30]. In the
studied case company, the issue tracking system (Microsoft
TFS) similarly supports specifying different types of issues.
The most common issue types used by the case company, are
feature, backlog item, task, bug, and test. The hierarchy of issue
types is illustrated in Fig. 3. The studied organization uses
these five issue types as defined by Microsoft [31]: feature
is the highest-level type of work, it is associated with a
specific product feature, and it is the parent of backlog item
and bug. Backlog item is used to track development work,
while bug is for tracking code defects. Moreover, task is
used to track fine-grained work, i.e. it is a child of both
backlog item and bug. Additionally, test-related issue types
are used independently of other types. Because there are
three test-related types, namely test case, test plan, and test

5. Effect sizes are marked as small (0.11 ≤ d < 0.28), medium (0.28 ≤
d < 0.43), and large (0.43 ≤ d) based on suggested benchmarks [28]

Feature

Backlog Item

Task

Bug

Test

Issue Type Is Parent Of

Fig. 3. Hierarchy of issue types.

suite, we group them together under the category of test.
Table 9 presents the number of different types of SATD in
accordance with these different issue types. As we can see,
most of SATD is identified as backlog item and task (4,822
and 4,492 respectively). This indicates that backlog item and
task are the two most popular issue types to admit technical
debt.

TABLE 9
Number of Different Types of SATD Items in Different Types of Issues.

Debt Type
Issue Type

Feature Backlog
Item Bug Task Test

Code/Design debt 695 3,770 1,204 3,355 220
Req. debt 58 350 37 211 10
Doc. debt 85 512 46 701 0
Test debt 47 190 46 250 17
All SATD 885 4,822 1,333 4,492 247

Because the total numbers of the different types of issues
vary, it is unclear which issue type has the highest percent-
age of SATD issues. To address this, we show the percentage
of different types of SATD in accordance with different issue
types in Table 10 and Fig. 4. We can notice that although
backlog item and task have similar number of SATD issues
(4,822 versus 4,492) in Table 9, backlog item has a significantly
higher percentage of SATD issues compared to task (24.5%
versus 12.4%). This means that backlog item has the highest
percentage and number of SATD issues among all issue
types; in other words, it is the most used issue type for
admitting technical debt. This is in line with the definition
of technical debt [1]: while defects and poorly/partially
implemented features are symptoms of technical debt, pure
technical debt items concern issues that directly affect the
maintenance and evolution of a software system.

TABLE 10
Percentage of Different Types of SATD Items in Different Types of

Issues.

Debt Type
Issue Type

Feature Backlog
Item Bug Task Test

Code/Design debt 16.7% 19.2% 12.4% 9.2% 12.9%
Req. debt 1.4% 1.8% 0.4% 0.6% 0.6%
Doc. debt 2.0% 2.6% 0.5% 1.9% 0.0%
Test debt 1.1% 1.0% 0.5% 0.6% 1.0%

All 21.2% 24.5% 13.8% 12.4% 14.5%

Additionally, as can be seen in Fig. 4, feature and backlog
item have a higher chance to contain code/design debt
(16.7% and 19.2% compared to the average of 12.8%), while
task only has 9.2% of items being code/design debt (which is
lower than average). Moreover, the percentages of require-
ment debt for feature and backlog item are also higher than
other types of issues (1.4% and 1.8%, respectively). Finally,
issues with the tags of bug and test are less likely to have
documentation debt (0.5% and 0% compared to the average
percentage of 1.9%).



9

Code/Design debt Req. debt Doc. debt Test debt
0

0.05

0.1

0.15

0.2 Overall

Feature

Backlog Item

Bug

Task

Test

Fig. 4. Percentage of Different Types of SATD Against Different Issue
Types.

4.2 (RQ1.2) How Is Automatically Identified SATD Re-
garded by Professional Software Engineers?

We report here the opinions of the interviewees on identified
SATD and corresponding statistics produced by the auto-
mated SATD analysis. First, we present the attitude towards
SATD identified from different sources (two examples of
identified SATD are shown in Section 3):

• Attitude towards SATD identified from code comments.
We found that eight out of ten interviewees that
commented on this, confirmed that SATD identified
from code comments is indeed technical debt from
their perspective: “yeah, those are the typical things
[technical debt] that we enter in the code indeed.” The
other two interview participants also identified the
vast majority of the discussed SATD items but were
not very sure about one or two items: “the first one I
would say difficult, it could also be a matter of taste; [...]
the last one is the same as the first one, really depends on
the situation.”

• Attitude towards SATD identified from issues. Six out of
seven interviewees acknowledged SATD identified
from issues as debt: “I expect them to be part of the
backlog list, but I cannot explain to you one by one; I think
they are technical debt.” Meanwhile, one interviewee
found it difficult to judge whether it is SATD or not.

• Attitude towards SATD identified from commits. Seven
out of eight participants confirmed that SATD iden-
tified from commits is technical debt from their
point of view. Interestingly, four out of these seven
participants pointed out that SATD in commits con-
cerns documentation of paying back technical debt
instead of incurring technical debt: “do you recognize
technical debt in commits? yeah, but I think these are
[documented] when somebody solves the technical debt in
commit messages.” There is one interviewee that did
not acknowledge SATD in commits: “we always added
text block in commits but not technical debt in commit
messages.”

Second, we discuss the participants’ opinions about the
importance of the identified SATD items. Five out of nine
interviewees mentioned that they need more information
to determine the importance: “you have to know the imple-
mentation to have some insights on how severe such a thing

is and how much work it will be to solve it; it [importance]
is not immediately clear from the TODO itself.”. Besides, two
out of nine participants believed that some of the items are
not important, while the others need more information to
evaluate: “the first one that I would say it’s something that isn’t
really going to be resolved [...] the third one - it looks like it
depends a bit on the on the functionality; is this really important
or not, which is difficult to determine.” Meanwhile, the rest
two of the nine interviewees pointed out that none of the
identified SATD are important: “it does not have urgency to be
solved.”

Third, we describe the attitudes towards average time
to close issues (see Tables 6 and 7). Seven out of nine
participants expected the same as the figure they were
shown: “I think that is correct, which is about the balancing I
told you between new functionality and technical debt.” They
also mentioned that the reason behind this phenomenon is
that they are under big pressure to implement new features
or fix bugs instead of improving the quality of the code by
solving SATD: “I know [this] project is in challenging phase; they
are high pressured to reach the time-to-market, [so] we are also
under pressure to have shortcuts and do not redesigns [unless we
are] told necessary by the developers.” One interviewee agreed
that technical debt items take a longer time to be resolved
compared to non-debt items, but he also pointed out that
he expected documentation debt to take the longest time
to be solved among all types of debt: “I did not expect test
debt takes that long; I would have expected the documentation
debt to be there the biggest one.” Besides, one participant
had different expectations than the results: “I think it’s a
matter of calculation; it’s the other way around [compared to the
expectation].”

Fourth, we report the thoughts of participants towards
all the presented statistics (see Tables 4 to 7, 9 and 10
and Fig. 2) and identified SATD items (some examples are
shown in Section 3):

• Giving insights on how technical debt is managed. Five
interviewees indicated that statistics help them un-
derstand how technical debt is managed in their
projects: “if you look at the statistics, I think that’s the
objective view of how things are managed.” Furthermore,
two of the participants considered it useful that
the statistics provide information about the different
types of SATD and the average time spent on SATD
items and non-debt items.

• Showing what are the focus points. One participant
mentioned that statistics also show what the team
emphasizes during SATD management: “do you think
statistics is useful? yeah, [...] I would say [I know] what
is focused on.”

• Increasing the awareness of SATD. Five interviews re-
vealed that statistics and identified SATD help devel-
opers be conscious of technical debt in the projects:
“it could always help to make us aware of technical debt.”

• Providing insights on future improvement. One inter-
viewee stated that statistics could help developers
become better and achieve higher productivity: “it
gives some insight on how can you improve and be more
efficient in your work.”



10

4.3 (RQ1.3) What Are the Relations Between SATD in
Different Sources?

The relations between SATD items in different sources, as
derived from the data, are summarized and presented in
Fig. 5. It is evident that technical debt admitted in code
comments and issues is referenced in the other two sources,
while technical debt admitted in commits is not mentioned
in other sources. Because each issue has a unique issue ID,
developers can refer to that ID when referencing a SATD
issue: “in most cases, we try to add the issue ID within the
comments.” We call this reference a specific reference. On the
other hand, since there is no unique identifier for each
source code comment, it is impossible to reference specific
comments. Thus, such references are usually approximate
references. We describe the relations in detail as they are
numbered in Fig. 5:

2)

3)

Issues

Commit Messages

1)

4)

Code Comments

Source
Approximate reference
Specific reference

Fig. 5. Relations between SATD items in different sources.

1) Technical debt admitted in code comments is referenced
in issues. Two interviewees mentioned that it is not
common to reference SATD code comments within
issues: “in the issues, nine out of ten times, [develop-
ers] never write down which actually line or file [is]
related.” However, one of them also pointed out
that developers sometimes note down in issues the
approximate location of technical debt which has
been documented in code comments: “[developers]
only specify a certain piece of code where the problem
resides.”

2) Technical debt admitted in issues is referenced in code
comments. The links from issues to code comments
are mentioned by four interview participants. They
tend to add issue IDs (unique identifiers) in the code
comments to establish clear links: “sometimes you add
a link to the issue in the code.”

3) Technical debt admitted in issues is referenced in commit
messages. Three interviewees mentioned that SATD
in issues is also referenced in commits: “in the
commit, we are able to tag the issue item, and then the
link between commits and issues is made automatically.”
This gives developers a better understanding of the
changes in the commits: “I do not know if it was a
single line commit message, which is vague, short, and
without explanation [...] we need to have more informa-
tion in the commit or a link to the issues.”

4) Technical debt admitted in code comments is referenced
in commit messages. One interviewee indicated that
the repayment of SATD in code comments might
be documented in commit messages: “there could be

a link if you have the previous one in comments, when
somebody solved it, probably in the commit message you
might record the resolve of it.”

4.4 (RQ2.1) When Is Technical Debt (Not) Admitted in
Source Code Comments, Issue Tracking Systems, and
Commit Messages?

During the interviews, we established that software engi-
neers tend to admit technical debt in different sources for
different reasons. For each source (i.e., source code com-
ments, issue tracking systems, and commit messages), we
report several cases why technical debt is being admitted.
We start first with the source code comments:

• Scale of technical debt is small. Four interviewees
mentioned that developers tend to document small
technical debt items in source code comments: “if it
[technical debt] is too small, just admit it in the code com-
ments.” Regarding what small technical debt actually
means, as an interviewee stated: “if you look at things
in source code, they are typically smaller; those things are
just magic number or making this as parameter...”

• Solving technical debt brings little or no benefit. When
solving technical debt yields small or negligible ben-
efit, developers tend to document it in comments: “if
we will not gain the advantage over anyway, then probably
something will be noted in the software [...] a comment
will be added.”

• Deciding not to fix the technical debt. Two participants
pointed out that if developers reach an agreement
on not fixing the technical debt, they usually just
document it in code comments: “if we already decide
not to fix this technical debt, then probably it will remain
as comments.”

• Helping other developers to become familiar with technical
debt related to code and its rationale. Five interviewees
mentioned that it is important to document techni-
cal debt and its rationale to help other developers
become aware of problematic code and the reasons
behind it: “the comments in software to make sure that
when people are facing troubles and having a look at the
software again that they know about the facts that have
been made to some different choices and which could result
in a problem.”

• It concerns requirement debt. Three interviews revealed
that if the technical debt is of the type requirement
debt, such as partially implemented requirements,
developers prefer to document it in source code
comments: “because we have not finished yet, it [code
comment] is typically written down while developing the
feature.”

Second, for issue tracking systems, technical debt is docu-
mented in the following cases:

• Scale of technical debt is big. Six interview participants
indicated that developers always document large-
scale technical debt in issue trackers: “If you look at
issue tracker... you have to fix this entire piece of code,
that’s a bigger span, while in code it’s basically for the
next line.”



11

• Technical debt is part of the future plan. Five intervie-
wees pointed out that developers always document
technical debt in issues when they actually plan to
fix them in the future: “I think that we create issues for
them [technical debt] to make sure that they will become
part of the future plans.”

• Features only supported by the issue tracker. Issue track-
ing systems provide features that are not provided
by code comments or commits, such as uploading
attachments and assigning severity levels for issues.
An interviewee mentioned that he always summa-
rizes technical debt and designs in a word document
on a daily basis, then uploads it as an attachment
when creating a new issue.

• Track technical debt repayment in the engineering phase.
Developers in this case study refer to software de-
velopment in later iterations with engineering phase,
which is different from the early phase of develop-
ment. When developers want to track what changes
will be made to solve technical debt in the engineer-
ing phase, they create issues: “I think in engineering
phase [when I] have to clean something up, I will definitely
make issues, so you can always see what has been done; in
the early phase, it’s just about what works are expected.”

• Duplicate existing technical debt admitted in code com-
ments. Three software engineers believed that ex-
isting technical debt in comments should also be
admitted in issues to facilitate their tracking: “if there
are still TODOs in the code, there should also be an issue
that something still needs to be done.”

Third, developers document technical debt in commit
messages, in the following cases:

• Commits introducing Technical Debt. One interviewee
pointed out that, if commits include workarounds
that are typical of technical debt, they usually doc-
ument those problems, as well as the related issue
keys in the commit messages: “we have certain commits
which indicate that we have to make shortcuts or we have
implemented a temporary situation.”

• Commits related to technical debt repayment. Three inter-
views disclosed that if commits are about technical
debt repayment, they always document it in commit
messages: “these are when somebody solved technical
debt in these commit messages.”

Finally, we also summarize the cases when technical debt
is ignored or not documented in artifacts:

• Developers are under pressure and forget to document
technical debt. Three participants pointed out that if
the pressure is very high, developers usually focus
on other work and postpone technical debt docu-
mentation; in most cases, it is eventually forgotten:
“if the pressure is really high, [...] you will do that [tech-
nical debt] tomorrow, and tomorrow has another thing that
got forgotten.”

• Certain types of technical debt are ignored. According
to four interviews, some developers do not consider
certain types of technical debt to be important and
choose not to document them. Specifically, intervie-
wees believed that developers pay less attention to

documenting test debt: “I think we don’t have that
many technical debt items for missing test cases; I think
you more or less know about them, but no real documen-
tation about test cases and actual implementation.”

• Scale of technical debt is small. When the scale of
technical debt is small, developers may decide not to
document it at all because of its low impact: “what are
the reasons not documenting technical debt? [it depends
on] how big is the technical debt, if just a small thing, it’s
probably not.”

• Technical debt in legacy code. Two interviewees re-
ported that developers are aware of the limitations of
technical debt in old parts of the system and choose
not to document it, because they know it will not
be fixed anyway: “[if] the architecture is already fifteen
years old [...], you know what the limitations are, you can
still write technical debt to make it better, but you know it
will not be fixed anyway.”

• Short life of technical debt. We noticed that when de-
velopers think the technical debt will be solved in
the near future, they might choose not to document
it (mentioned by three interviewees): “I know that for
the old release, we make a quick workaround, but we don’t
mark [it] as technical debt because we make the actual good
solution in our mainline immediately.”

• Direction is unclear in early phases. Because of un-
certainties in the early phases of projects, software
engineers may choose not to document it: “At the
beginning of the project, it can go anywhere, so if you put
a lot of effort in explaining why something is done, it takes
lots of time.”

• The responsibility of other developers. In some cases,
developers are in charge of certain parts of software
development or documentation update. When other
developers encounter technical debt, they prefer to
let the responsible person document it: “if it’s someone
else’s documentation, I might mention it to someone. I
usually do not create an issue for that.”

• Treating technical debt as common knowledge. One par-
ticipant mentioned that technical debt is not docu-
mented when it is known by everyone in the team:
“[technical debt] is not documented [...] [when we] have
accepted [it], and treat [it] as a common knowledge of
the team; the team members know that issue is there, or
inconvenience is there.”

4.5 (RQ2.2) What Are the Pros and Cons of Admitting
Technical Debt in Different Sources?
The pros and cons of documenting technical debt in source
code comments are summarized below:

• - Pointing to problems in the code. Five interview par-
ticipants pointed out that technical debt documented
in code comments could help developers understand
the existing technical debt in code and potentially
solve it: “make sure that people are looking at the software
[reading source code], they will be familiar with the fact
that there is technical debt in code.”

• - Long lifetime of code. One interview participant
indicated that code is a very stable artifact compared
to others. In contrast to other artifacts, comments in



12

source code will not disappear in the future: “I have
seen tools coming and gone; five years back we [switched
the issue tracker] [...], [but] I have code older than five
years, maybe ten years old, so I don’t know the change
request anymore from seven years back and the rationale;
the only thing I have is just the source code.”

• -/, Limited visibility. On the one hand, document-
ing technical debt in code comments causes less dis-
turbance to other developers: “too many detailed tasks
[in issues] does not help which could bother teammates [...]
just admit them in the code comments, [...] because you
intend to solve it soon anyway.” On the other hand, it
could restrict the visibility of technical debt, resulting
in paying less attention to it: “they are not visible
anymore, only if you run into that.”

• , Resolving it depends on the initiative of developers.
Three interviewees reported that it highly depends
on software developers to solve or leave technical
debt admitted in code comments: “you need be lucky
that someone will be working on this to get a solution.”
Thus, documenting technical debt in the source code
can act both as an advantage (if it gets resolved) and
a disadvantage (if it is ignored).

Subsequently, we list the main pros and cons of admit-
ting technical debt in issues:

• -/, Visible to the whole team. Six interviewees men-
tioned that technical debt admitted in issues has the
advantage of being visible to everyone in the team,
helping developers to keep track of it: “issue tracker
is used for recording important technical debt which is
shared in the team.”

• - Issue trackers provide features not supported by other
artifacts. Two interviewees revealed that issue track-
ing systems provide several features that support
technical debt management. Specifically, issue track-
ers can give developers an overview of all docu-
mented technical debt: “it’s a good thing that technical
debt is mostly recorded in the issue tracker because this
gives an overview.” It also supports uploading tech-
nical debt information as attachments, assigning the
issue type, and assigning the issue severity. Finally, it
supports keeping track of what has been done about
the technical debt: “I will make an issue, so you can
always see what has been done.”

• - Support planning to resolve technical debt. Six in-
terviewees reported that technical debt documented
in issues will be a part of the future plan and be
resolved eventually. This is because, in addition to
developers, team managers also participate in the
management of SATD in issues: “[as the team lead]
once they are in issues, they are in my list of choosing
priorities, that I can deal with it.”

Finally, the pros and cons of recording technical debt in
commits are presented below:

• - Providing explanation for TD changes. Two inter-
viewees mentioned that commits are important to
explain what TD changes are made to the repository,
such as introducing TD, modifying TD, and repaying
TD: “commit messages should include what has changed

and what has been done, also for changes to technical
debt.”

• -/, Limited visibility. Similar to code comments,
technical debt admitted in commits has limited visi-
bility. From the viewpoint of the team lead, it is not
visible to him: “if they are in comments or commits,
they’re not on my desk.”

• , Resolving it depends on the initiative of developers.
There is no guarantee that technical debt admitted in
commits will be resolved. It depends on the develop-
ers to solve it or leave it. The team lead only manages
technical debt documented in issues: “I don’t manage
technical debt in code comments and commits at all, that’s
really depending on the engineer’s responsibility.”

4.6 (RQ2.3) What Are the Triggers to Pay Back or Not
Pay Back SATD?
According to the interview responses, software developers
tend to repay SATD in the following cases:

• SATD is involved in upcoming changes. Based on six
interviews, developers always choose to repay SATD
when changes are going to take place in the same
part of the system. This is because technical debt
could make the changes more difficult: “for instance
the parameterize thingy, if I was doing a change which
actually needs that or in the same area, I would take that
along because that would really help me if I solve it.”

• SATD is related to bugs. In another case, three intervie-
wees reported that when they find SATD connected
to bugs, they will solve the technical debt: “we really
have to start solving [the technical debt] that keeps bugs
popping up with that same piece of code, [for example
if] you have these bugs popping up [while] you see test
debt, [it happens because you] don’t have test cases in that
area.”

• SATD is experienced by stakeholders. One interviewee
indicated that SATD observed by stakeholders is
more important: “I will focus first on technical debt that
is experienced by stakeholders.”

• SATD hinders other tasks. Two participants pointed
out that they need to repay SATD when it prevents
them from keeping making progress: “if they are
hindered by [technical debt], then it’s important to focus
on the bad choices.”

• Small SATD that can be solved easily. Based on three in-
terviews, we found that when developers encounter
SATD and think the debt can be paid back easily,
they prefer to solve it straight away: “if there is a small
[technical debt], there is time left in your sprint then you
could pick up such a small item.”

• The same SATD keeps annoying developers. Two re-
sponses indicated that when developers encounter
a technical debt item, which is repeatedly of concern
to them, they will take some time to solve it: “if you
hit the same technical debt item and it annoys you enough,
then it will be solved.”

• Certain types of SATD are valued more than others.
Some developers believe that certain types of SATD
are more important than others, and they choose to
repay them with higher priority. More specifically,



13

two interviewees stated that they prioritize test debt:
“I would prioritize test debt; that’s critical on the code
quality.” On the other hand, two participants men-
tioned they always give design debt higher priority:
“you also see preferences more to the design debt to
documentation debt.”

• Too much SATD in the area. Five participants pointed
out that when too much SATD is accumulated in a
specific part of the system, it gets to be paid earlier
rather than later: “if there is a lot of technical debt in
those modules, you might want to pick up earlier, cause
if there is some TD there, maybe something wrong in the
design...”

• Location of SATD is special. One interview participant
mentioned that SATD in different parts of the project
is treated differently. They always give high priority
to SATD in certain modules: “it is up to the part of the
project if I make a shortcut that should not be in; I am
aware of it and will resolve it.”

• Potential risk of SATD is high. According to three inter-
views, when the potential risk of SATD is very high,
SATD should be worked on: “I think you should work
on the most important things, the highest risk things.”

• Have sufficient time. Three interviewees indicated that
when they have sufficient time, they will take some
time to solve SATD: “when do I decide to solve technical
debt apart? when I have time in the program.”

• Software craftsmanship. Two interview participants re-
ported that some developers have the attitude of
striving to deliver software of high quality: “[if] I
have craftsmanship, I deliver software as the input and
believe the software needs to be correct and needs to be
maintainable.”

Meanwhile, in the following cases, SATD is ignored and
left unresolved:

• Repaying SATD brings small benefit. Three intervie-
wees mentioned that if the software works, repaying
SATD yields only a small benefit. Thus, developers
tend to not pay back the debt: “if it already works, why
make it better? someone pays for it.”

• Repaying SATD takes too much effort. Four participants
had concerns about the considerable effort required
to pay back SATD: “we don’t want to invest in it, due to
[...] too much effort.”

• Potential risks of paying back SATD. Four interviewees
expressed the concern that it could be risky to re-
pay SATD, as it might break existing functionalities:
“there is some regression risk involved; it should be simple
but sometimes takes a long time to finish.”

• Certain types of SATD are ignored during repayment. As
one of the participants mentioned: “the one writing
[documentation] typically isn’t the user of it”; some
developers simply give documentation debt low pri-
ority: “I don’t like writing documentation, so I really
try to postpone writing the document.” Besides, two
participants stated that some developers do not see
test debt as important and choose not to repay it:
“[some] engineers don’t see writing tests really helps them
because you have implemented something; it runs on a
machine and it works.” Moreover, another interviewee

pointed out that architecture debt is sometimes ig-
nored in the maintenance phase: “architecture debt is
addressed differently than design and test debt because it
more prevents production; architecture debt also depends
on the development phase; if it goes to maintenance phase
from earlier phases of building a new product, we often
keep the debt as long as it doesn’t break functionality.”

• Learning effect for the SATD creator. Another intervie-
wee believed that the debt creator should solve it,
to be able to learn from it: “it is important to close
the feedback loop; if others resolve it [technical debt], the
people who created it will never learn from it.”

• Inactive code. Two interviewees reported that when
the code is inactive and there are no changes planned
for it, related technical debt does not have priority to
be paid back: “If there are no changes or features, or
plans for this, maybe [it] will not be used anymore, then
that’s not so important.”

• Careless developers. Lastly, one interview revealed that
irresponsible developers also lead to SATD unsolved:
“some people say we should solve it, and then they don’t
stick to it.”

4.7 (RQ2.4) What Practices Are Used to Support SATD
Management in Industrial Settings?
In the following, we summarize practices used to assist in
SATD management. First, we describe practices that help
prioritize SATD using different criteria:

• Custom list. Four interviewees indicated that they
maintain a list of SATD with an order of priority.
Specifically, they usually put the high-priority SATD
on the top of the list for quicker repayment: “[we] try
to prioritize the list, and the most important items are on
the top that needs to be solved first.”

• Severity level of tickets. Issue tracking systems always
support setting the priority for each issue ticket (e.g.,
block, minor, and trivial) [32]. One interview par-
ticipant mentioned they also use the issue tracker’s
built-in function to set the priority of each issue:
“most items are already categorized with a severity.”

• Type of tickets. Five interviewees mentioned that issue
types have an impact on the priorities of issue tick-
ets. They choose different issue types when creating
issues with different priorities. For example, the in-
terviewees considered that bugs have higher priority
than backlog items: “I would say I had a task if it is for
short term if you intend to solve it within this sprint, if
[...] you create a backlog item, [it could just] disappear, so
it would be better to write the bug then at least you have
a process to handle these.”

• Referencing issue keys. One participant indicated that
when adding a reference to an issue ticket, the SATD
in code comments will get higher priority: “if that
comment references an issue, it will automatically get
more priority.”

Second, we report two common practices to efficiently
pay back SATD:

• Grouping related technical debt items. Two participants
indicated they usually group related technical debt



14

items and investigate them together: “we group them
[technical debt] together; that’s we say, those four or five
items are in the same area, let’s now take a look at them
together, to be more effective.”

• Grouping technical debt and development tasks. Two
interviews revealed that developers also group tech-
nical debt and development tasks (e.g., fixing bugs,
creating new features, and adding tests). Then they
solve them jointly: “when we take technical debt we also
resolve other things, which is more efficient.”

4.8 (RQ3.1) What Challenges Do Software Practitioners
Face When Managing SATD?
In the following, we summarize the challenges for SATD
management:

• Convincing developers not to introduce SATD, when
not necessary. Three interviewees indicated that some
technical debt can be paid back easily, so it should
not be incurred in the first place: “many of these
[comments] seem to be fixed in five minutes, I think they
shouldn’t write these comments; they do not look like
effort-intensive.”.

• Prioritizing SATD. Five interviewees pointed out that
it is hard to determine priorities of SATD and other
works: “the biggest challenge is setting the priorities [...]
the challenge is always what’s the best to do, a piece of
functionality or technical debt?”

• Getting resources to pay back SATD. Based on two
interviews, we found that getting resources for debt
repayment remains challenging: “to get technical debt
on the agenda is a difficult task [...] there’s always an
argument to not work [on them].”

• Dealing with undocumented technical debt. Three inter-
view participants mentioned the difficulty of deal-
ing with undocumented debt: “we struggle with the
ones [technical debt] we are not aware of or somebody
identified without clearly communicated as being technical
debt.” One interviewee specified that it is especially
challenging when dealing with technical debt in old
parts of the system without documentation: “what
challenges did you face when dealing with technical debt?
dealing with legacy code in general [...] re-engineering the
code or design sometimes is difficult [...] it could be a lot
of helpful if there is some code documentation.”

• No guideline for SATD documentation. Four intervie-
wees pointed out the problem of not having concrete
guidelines for SATD documentation: “we don’t have
any agreements on when you have technical debt and want
to add some comments within the software, then please use
certain tags.”

• No guideline for SATD repayment. Besides, two in-
terviewees reported that there is no guideline for
repaying SATD: “there is no complete guideline; if you
have to solve this, then you should do this, this, and this.”

• Dealing with consequences of SATD. Two interviewees
found that it is challenging to deal with an increasing
list of SATD items, as it causes SATD items to be ig-
nored or not to document new technical debt: “some-
times the technical debt items get out of sight because the
list is becoming too long and you forgot about it; I am not

sure how to deal with that growing list of technical debt
items.” Meanwhile, another participant stated the
harmfulness of accumulating technical debt without
proper management: “in another project, it was horrible;
the big redesigns block the whole development, which also
affects the trust of the software.”

4.9 (RQ3.2) What Features Should Tools Have to Effec-
tively Manage SATD?

In the following, we report the tool features that developers
thought were useful for SATD management. We categorize
features into four groups: SATD identification, SATD trace-
ability, SATD prioritization, and SATD repayment. SATD
identification-related features are reported as follows:

• Automated SATD identification. Seven interviewees
mentioned that it would be useful to be able to
automatically identify SATD from different sources:
“I think [the tool should support] the identification of
technical debt, scanning code or issues.” The intervie-
wees suggested the following ways to present the
identified SATD:

◦ Show the list of identified SATD. Two interviews
indicated that identified SATD items should
be listed: “if the tool could make some kind of
printouts of technical debt items in your source
code, then I can imagine that I will sit together
with some engineers, walk through the list, find the
most important, and solve them.”

◦ Show the quantity of SATD in the system. One
participant suggested showing the number of
SATD items in the dashboard to increase the
visibility of SATD in code: “this dashboard will
show you how much TODO in our code, so that is
visible for the whole team.”

◦ Show the evolution of SATD quantity over time.
Another participant mentioned that it would
be useful to have a function showing the num-
ber of SATD over time to know when they
introduce more SATD or less SATD: “[the tool
should show] total amount technical debt in the
system evolving during the development of the sys-
tem, [so we can know] do we have more technical
debt in the early phase.”

◦ Show the quantity of SATD in different modules.
As mentioned in Section 4.6, if too much SATD
is accumulated in a part of the system or
in some specific modules, developers would
give the debt higher priority. Thus, they would
like the tool to show the quantity of SATD in
different modules: “what would you like to see?
[I want to have] some insights into which module
has a lot of technical debt.”

• Automated differentiation between fixed SATD and un-
fixed SATD. As stated in Section 4.4, the identified
SATD may be either repaid or not. There needs to be
a distinction between them; as one participant stated:
“I am curious only about the open ones [unsolved debt].”
The participants mentioned the following means to



15

visualize the distinction between solved and un-
solved SATD:

◦ Show the period between SATD introduction and
repayment. One interviewee mentioned that he
wanted to know the repayment time of SATD:
“[the tool should show] how much time is in
between when we decided to introduce technical
debt and when will things be solved.”

◦ Show how long unsolved SATD survives. Another
interviewee indicated that the tool should
show the survival time of SATD: “[the tool
should show] how long technical debt is there.”

◦ Show the timeline of fixed and not fixed SATD
items. Another interviewee was interested in
the point in time when they decide to either
pay the TD back or not: “[the tool should show]
what is the moment we solve most technical debt?
when do we decide to leave technical debt in the
system and stop working on them?”

Next, SATD traceability-related features are presented:

• Automated tracing between SATD in different sources.
In Section 4.3, we observed some relations between
SATD in different sources. But, some of these rela-
tions (e.g., technical debt admitted in code comments
referenced in issues) are rarely documented. Thus,
two interviewees think it would be very helpful if the
tool could build traces automatically between SATD
in different sources: “linking back and forth would really
help in getting an overview about technical debt things.”

• Automated tracing between SATD and code. Two par-
ticipants mentioned that it would be useful to know
the location of SATD in the code: “I would like to know
which area of code the technical debt is located at.”

• Automated tracing between SATD and related develop-
ment tasks. As described in Section 4.6, when SATD
is involved in upcoming changes, it is usually prior-
itized. Thus, developers are interested in which to-
do items (e.g., fixing bugs, creating new features, or
adding tests) are related to the SATD: “[the tool should
find] related work to it.”

Subsequently, we report the suggested features related
to SATD prioritization:

• Automated SATD prioritization. Two interviewees
wanted to automatically prioritize SATD: “I’m looking
to which part of technical debt could be left and which part
of technical debt really needs to pay attention to.”

• Automated identification of SATD risk. Three par-
ticipants mentioned that SATD risk identification
should be supported by the tool: “I am looking at
[...] what is the pain? do I need to solve it? what are the
consequences [of] not solving it?”

• Automated estimation of benefits to solve SATD. Two
interviewees indicated that estimating the benefits of
solving SATD (e.g. how much technical debt interest
will be saved) could be one of the tool’s functions:
“need to know what the benefit of it [solving SATD], what
is gained by it.”

• Automated estimation of cost to solve SATD. Based on
four interviews, developers mentioned that auto-
mated estimation of SATD repayment cost (also re-
ferred to as the principal of technical debt) is useful:
“the other thing is how much effort does it take to get rid
of this technical debt.”

Finally, there is one feature related to SATD repayment:

• Automated SATD solution suggestion. Two interview
participants asked for the tool to provide some po-
tential solutions (e.g. refactorings) for paying back
SATD: “the other tool could [provide] [...] possible routes
of solution.”

5 DISCUSSION

According to the study design (see Section 3), we formulated
three main research questions to investigate the nature of
SATD, the SATD management activities, and SATD man-
agement improvement. Thus, we organize the discussion
into three parts: the discussion about the nature of SATD,
the discussion about SATD management activities, and the
discussion about SATD management improvement.

5.1 Nature of SATD
As mentioned in Section 3, there are significant differences
between open-source and industrial projects. It is important
to know these differences in order to understand how to
better manage SATD in the two cases: what works for each
case, what works for both, and what can be reused from one
to the other. Thus, we compare the characteristics of SATD
in industrial and open-source projects.

TABLE 11
Comparison Between Percentages of Different Types of SATD Items in

Industrial Projects (IP) and Open-Source Projects (OSP).

Debt Type
Source

Comment Issue Commit
OSP IP OSP IP OSP IP

Code/Design debt 80.6% 77.9% 80.0% 78.2% 73.2% 84.4%
Req. debt 12.0% 14.9% 1.0% 5.9% 1.1% 4.5%
Doc. debt 4.3% 5.6% 11.1% 11.3% 19.3% 7.5%
Test debt 3.2% 1.6% 7.7% 4.5% 6.4% 3.5%

We first compare the percentages of different types of
SATD in industrial projects (IP) and open-source projects
(OSP). The comparison is presented in Table 11. It is noted
that data from industrial projects are calculated based on
Table 4, while the open-source data are obtained from 103
open-source projects from our previous work [12]. Specif-
ically, these 103 open-source projects are from the Apache
ecosystem. They are of high quality and well-maintained by
mature communities. Observing the table, we can find that
the majority of SATD is code/design debt in both industrial
and open-source projects, ranging from 77.9% to 84.4% and
73.2% to 80.6% respectively. Moreover, we notice that the
second most prevalent types of SATD from different sources
are consistent when comparing industrial and open-source
projects. Specifically, requirement debt is the second most
popular SATD type from code comments in both kinds



16

of projects, while documentation debt is the second most
prevalent type of SATD from issues and commit messages
in both kinds.

Implication 1: The majority of SATD in both industrial and
open-source projects is code/design debt. The second most
prevalent types of SATD from different sources (requirement
debt or documentation debt) are also the same in the two
settings. Researchers could further investigate whether the
types of SATD are similar in the two settings.

Regarding differences between the two settings, in Ta-
ble 11, we observe the following: 1) the percentages of
requirement debt from different sources in industrial projects
are significantly higher in comparison with open-source
projects; 2) the percentages of test debt of industrial projects
are lower than open-source projects in the different sources.
For the differences in requirement debt, we conjecture that
this might result from the relatively high level of difficulty
in changing embedded systems [33] and the high pressure
of the studied projects as mentioned in Section 4.2: “I know
[this] project is in challenging phase; they are high pressured to
reach the time-to-market, [so] we are also under pressure to have
shortcuts and do not redesigns [unless we are] told necessary by
the developers.” Similarly, Zampetti et al. [5] found that in-
dustrial developers reported releasing software under more
pressure compared to open-source developers.

Moreover, the lack of self-admitting test debt in industry
is consistent with our findings in Section 4.4 that certain types
of technical debt are ignored as some developers mentioned: “I
think we don’t have that many technical debt items for missing
test cases; I think you more or less know about them, but no
real documentation about test cases and actual implementation.”
However, the reasons behind this phenomenon need further
investigation. Additionally, according to the differences in
percentage between different types of SATD, as well as
the interviews, we advise practitioners to create thresholds
based on the percentages of different SATD types to evaluate
the quality of SATD management. For example, if there is
significantly less test debt documented than the threshold
and the code analysis tool shows low coverage, this might
refer more to the reluctance of developers to admit test debt
rather than low test debt.

Implication 2: The percentage of requirement debt is
higher while the percentage of test debt is lower in the
studied industrial projects in comparison with open-source
projects. The differences between percentages of different
types of SATD between different projects should be further
studied to potentially create thresholds for evaluating the
quality of SATD management.

Subsequently, we compare the percentages of SATD (ir-
respectively of type) in industrial projects and open-source
projects, as shown in Table 12. Specifically, the data from
industrial projects are obtained from Table 5, while the data
from open-source projects are still acquired from 103 open-
source projects from our previous study [12]. We perform
chi-square tests to compare the number of SATD items from

TABLE 12
Comparison Between SATD Percentages in Different Sources in

Industrial Projects (IP) and Open-Source Projects (OSP).

Source
Percentage of SATD

OSP IP Percentage Diff. Chi-Square Test

Comment 5.2% 2.6% -50% χ2(1) = 2150.66
p < 0.00001

Issue 13.0% 16.3% +25.4% χ2(1) = 666.83
p < 0.00001

Commit 11.3% 12.7% +12.4% χ2(1) = 37.33
p < 0.00001

different sources in open-source and industrial projects. As
can be seen in Table 12, the percentages of technical debt
admitted in industrial and open-source projects are compa-
rable. Interestingly, the percentage of SATD from code com-
ments in industrial projects is just half of the percentage of
open-source projects (2.6% versus 5.2%); this is statistically
significant (p-value < 0.00001). Thus, less technical debt is
admitted in code comments in industrial projects compared
to open-source projects. In a recent study, Zampetti et al. [5]
investigated the preferences for documenting technical debt
in source code comments between industrial developers
and open-source developers. They surveyed 101 software
developers and found open-source developers tend to admit
more technical debt in code comments in comparison to
industrial developers. Our results confirm these findings.

Implication 3: The overall percentage of technical debt
admitted in industrial and open-source projects are compa-
rable. There is, however, less technical debt admitted in code
comments in industrial projects compared to open-source
projects (2.6% versus 5.2%).

Furthermore, we can see that significantly more tech-
nical debt is admitted in issues and commits (+25.4% and
+12.4% respectively) in the industrial projects compared to
the open-source ones in Table 12. This is likely related to
the practices for SATD management that are followed in
the two types of projects. Within our industrial partner, we
established a preference for documenting SATD in issues for
better tracking. However, there might be other factors that
have an impact on technical debt documentation. Thus, the
evidence shows that more technical debt is documented in
issues and commits within the studied industrial projects
compared to open source projects. However, these differ-
ences are not as large as the differences in source code com-
ments (25.4% and 12.4% versus 50%). Ultimately developers
have the need to document SATD somewhere: industrial
developers seem to prefer issues and commits while OS
developers have a preference for source code comments.
Researchers could further investigate if this is true more
generally with further studies in industry.

Implication 4: There is more technical debt admitted in
issues and commits in industrial projects compared to
open-source projects (+25.4% and +12.4%). However, the



17

differences are not as large as the differences in source
code comments. Researchers can investigate the differences
in other projects and look deeper into the causes of these
differences.

Subsequently, we compare our results regarding the
issue closing times and issue closing percentages with pre-
vious work. There are two studies that investigated the
closing time of issues. The first one was conducted by
Bellomo et al. [29], who hypothesized that technical debt
issues take a longer time to resolve than non-technical debt
issues. However, they found that the average open days
of issues vary greatly, and their results did not support
their hypothesis. In the other study by Xavier et al. [34],
they found that the median time to close technical debt
issues is longer than other issues (16.7 days versus 4.0
days). In this paper, we investigated the same research
question in industrial settings (see Section 4.1). The results
shown in Tables 6 and 7 indicate that technical debt issues
take a longer time to resolve compared to non-technical
debt issues (with statistical significance). This supports the
hypothesis proposed by the previous study [29]. It is noted
that our study focuses on SATD in industrial settings. This
hypothesis still needs to be tested in open-source settings.
Furthermore, our study confirmed that the reason why
technical debt issues take a longer time to close and have
a lower closing rate is that developers are under pressure to
implement new features or fix bugs instead of paying back
technical debt (see Section 4.2).

Implication 5: The hypothesis that technical debt issues take
a longer time to resolve than non-technical debt issues is
supported by our study in industrial settings. Researchers
could further examine this hypothesis in open-source settings
and compare the results.

Moreover, our study investigated the time to close issues
and the closing rate of issues with different types of SATD
and non-SATD. The results show that certain types of SATD
take a significantly longer time to resolve than certain other
types of SATD. Specifically, observing Tables 6 and 7, we
notice that requirement debt and test debt issues take a longer
time to close compared to the other two types of SATD
(70.2 and 80.7 days versus 62.5 and 60.4 days). Moreover,
they also have the first and second lowest closing rates
compared to others (60.8% and 67.0% versus 71.3% and
72.0%). Furthermore, we find that test debt issues take a
significantly longer time to resolve than code/design debt
and documentation debt issues (p-value is 0.014 and 0.020
respectively). Overall, we observe that requirement debt and
test debt might have a lower priority compared to code/design
debt and documentation debt. This finding is in agreement
with the findings of Ebert and Jones [35] which showed
that requirements and tests are the major cost drivers in
embedded-software development (requirements engineer-
ing and testing take most of the effort). As mentioned in
Section 4.6, “repaying SATD takes too much effort” is one of
the triggers not to pay back SATD. Thus, we conjecture that

requirement debt and test debt issues take a longer time to
close because they require more effort to repay than other
types. The detailed reasons behind the observations still
need to be further investigated and validated. Additionally,
researchers could use our trained machine learning model to
identify SATD issues in other projects and calculate the time
spent to close different types of SATD issues, to investigate
the priority of different types of SATD in different projects
and compare results.

Implication 6: Requirement debt and test debt take
longer time to be solved compared to code/design debt and
documentation debt in the studied industrial projects. This
observation still needs to be investigated and validated in
other projects. Researchers could also use our SATD analysis
approach to study the priority of different types of SATD in
open-source projects.

In Section 4.2, we observed that most of the interview
participants acknowledged the relevance and importance
of the automatically-identified SATD items. Because we
utilized publicly available datasets [6], [12], [16] to train
machine learning models to identify SATD from the indus-
trial projects, the results show that our models can be used
to accurately identify SATD in industrial projects. We thus
encourage researchers to use our approach to study SATD in
industrial settings. To facilitate this, we share our scripts and
trained machine learning model in the replication package3.
Moreover, we noticed that most of the participants (five
out of nine) indicated that it is difficult to determine the
importance of SATD based solely on SATD statements. We
suggest that researchers find the best method for presenting
SATD, e.g. showing the SATD statements together with
other contextual information to provide a broader picture.

Implication 7: Most of the interviewees acknowledged the
automatically identified SATD. Researchers could use our
trained machine learning model to further investigate SATD
in other industrial projects.

In Section 4.3, we observed that it is common for source
code comments or commit messages to reference related
technical debt items in issues; the opposite is not common.
Moreover, developers believed it could be very useful if
related SATD is linked together. In the current state of the
art, only the relation between code comments and commits
has been used to study the repayment of SATD [11], [36],
[37]. Thus, we argue that researchers and practitioners need
to study the relations between SATD in different sources and
build tools that aid in establishing traces between SATD in
different sources and properly visualizing them.

Implication 8: Researchers and practitioners could further
investigate the relations between SATD in different sources
and build tools to automate and visualize traceability between
SATD in different sources.



18

5.2 SATD Management Activities

In Section 4.4 we saw seven distinct cases that cause techni-
cal debt to be ignored and stay undocumented. Such implicit
technical debt can have grave consequences for the develop-
ment team. Researchers could look into this and propose
solutions to avoid missing documentation for important
technical debt. Moreover, as pointed out in Section 4.8, there
are no concrete guidelines on technical debt documentation.
Our work extended the scope of SATD documentation to
three sources, namely code comments, commit messages,
and issue trackers. Thus, we suggest that researchers and
practitioners create comprehensive guidelines and develop
tools to help technical debt documentation for different use
cases in different sources based on our findings. Further-
more, the pros and cons of documenting technical debt in
different sources, as described in Section 4.5, can also be
of assistance in creating the aforementioned guidelines and
tools, by building on the pros and working to avoid the
cons.

Implication 9: Researchers and practitioners could create
guidelines and build tools to assist in technical debt docu-
mentation in different sources.

In Section 4.6, we reported the triggers for paying back
and not paying back SATD. However, the interviewees’
opinions on certain types of SATD are contradictory. More
specifically, some developers saw test debt as a trigger to
repay SATD, while some others believed it should be ig-
nored. This is caused by different participants’ opinions
about the importance of test debt. We encourage researchers
and practitioners to create guidelines customized for specific
organizations and teams about the importance and ways of
repaying different types of SATD. The triggers identified in
our study can act as an input for such guidelines. Moreover,
researchers could also study how to eliminate the effects
of SATD accumulation caused by triggers for not paying
back technical debt. Finally, researchers could investigate
the triggers in open-source projects, compare them, and
create comprehensive lists of triggers for both open-source
and industrial projects.

Implication 10: Researchers could investigate triggers for
repaying and not repaying SATD, and create guidelines and
tools for SATD prioritization based on those triggers. Besides,
strategies to mitigate the effects of SATD accumulation
caused by triggers for not paying back SATD need to be
studied. Moreover, researchers could investigate triggers in
open-source projects and compare results.

In Section 4.7, we reported the practices used to support
SATD prioritization. These practices are not acknowledged
by all the interviewees.; for example, in contrast to the
practice of using issue types (e.g., bug, task, and backlog
item) to set priorities of SATD, one participant did not find
significant differences between issue types. This is due to
the organization not using such issue types in a standard-
ized manner. Researchers should study and propose such

practices for SATD prioritization that can be standardized
across organizations.

Implication 11: Researchers could study and use the prac-
tices to support SATD prioritization by embedding them in
tools or processes.

In Section 4.7, we also report on two strategies for
efficiently paying back SATD. We found that adopting such
strategies heavily depends on developers’ personal opinions
and discussions with their colleagues. Researchers could
investigate how much effort (i.e. technical debt interest) is
saved by using these strategies and how to automatically
group SATD and other tasks for higher repayment efficiency.

Implication 12: Researchers could investigate the efficiency
of SATD repayment strategies and build tools to help devel-
opers utilize these strategies.

5.3 SATD Management Improvement
In Section 4.8, we list the challenges faced by interviewees
when dealing with SATD. We suggest that researchers ex-
amine the impact of the listed challenges, and propose
strategies and tools to tackle them. Some of the challenges
can be addressed directly within the development team, e.g.
convincing developers not to introduce technical debt when
not necessary. Practitioners could discuss these challenges
in their team and decide which they can tackle and how.

Implication 13: Researchers can evaluate the impact of
challenges, and propose strategies and tools to tackle them.
Practitioners can also review them and discuss which ones
they can address.

The participating developers have come up with vari-
ous features they would like to see in SATD management
tools (see Section 4.9). This begs the question of whether
the current research work can already offer some of these
features. To offer a preliminary answer, we checked research
publications in Google Scholar, using the search string “self-
admitted technical debt”. This resulted in 72 papers that deal
with SATD; we then read their abstract and full text to filter
out papers that are irrelevant to the required features (see
Section 4.9). The resulting set of 45 related papers is listed
in Table 13. As we can see, the majority of these papers
focus on automatically identifying SATD from source code
comments, while there has been no work investigating auto-
mated differentiation between fixed and unfixed SATD, automated
tracing between SATD and code or related development tasks, and
automated identification of SATD risk. For the other proposed
features, some related studies exist, but these are not fully
supported yet or require better support. For example, there
is a study relevant to automated SATD solution suggestion [70],
but it is only able to suggest one of six predefined SATD
repayment strategies (e.g., changing API calls or changing
return statements). Furthermore, the usefulness of each fea-
ture and the difficulties of implementing each feature are



19

TABLE 13
Comparison Between Suggested Features and State-Of-The-Art.

Suggested Features Related Papers

Automated SATD
Identification From

Code Comments

[6], [7], [12], [14], [15],
[38], [39], [40], [41],
[42], [43], [44], [45],
[46], [47], [48], [49],
[50], [51], [52], [53],
[54], [55], [56], [57],
[58], [59], [60], [61],
[62], [63], [64], [65], [66]

Issue Trackers [3], [12], [16]

Commit Messages [12]

Pull Requests [12]
Automated Differentiation Between Fixed and

Unfixed SATD -

Automated Tracing
Between SATD

in Different Sources [11], [12], [36], [37]

and Code -

and Related Development
Tasks -

Automated SATD Prioritization [9], [67], [68]

Automated Identification of SATD Risk -

Automated Estimation of Benefits to Solve SATD [8]

Automated Estimation of Cost to Solve SATD [9], [69]

Automated SATD Solution Suggestion [70]

different. We recommend that researchers and practitioners
evaluate the added value of each proposed feature, imple-
ment tools including the most important features, and test
the effectiveness of such tools.

Implication 14: Most research works in SATD management
tools focus on automatically identifying SATD from source
code comments. Researchers should investigate other features
required by the interviewees, such as automated differenti-
ation between fixed and unfixed SATD, automated tracing
between SATD and code or related development tasks, and
automated identification of SATD risk.

6 THREATS TO VALIDITY

6.1 Construct Validity

Threats to construct validity concern the correctness of
operational measures for the studied subjects. One of the
threats to construct validity in the study concerns the poten-
tially different interpretations of discussed topics between
interviewees and researchers. Because we focus on SATD in
this study and most of the interviewees were not familiar
with this concept, we tried to avoid misunderstanding this
term by 1) asking for their understanding of technical debt;
2) asking them to give some examples of it to make sure
they have the correct comprehension; 3) reminding them,
during the interviews, that we focus on technical debt
that is documented in different sources to avoid confusion.
The responses we received from the interviewees regarding
how they understand technical debt and the examples of
technical debt they gave, attest to a correct understanding
of the concept by all interviewees. For instance, one of the
interviewees gave the following examples of technical debt:

“for me, technical debt can be multiple things; it can be a design
that works now but might be problematic in the future. It also
covers shortcuts you take in the code. When you have a bug, you
create a quick workaround, so your customers can continue, which
you know actually [...] needs a solid fix so that in the future it will
remain intact. I think technical debt also builds automatically if
certain techniques are no longer maintained, so you need to switch
to a new one because you cannot upgrade it...”.

Another threat to construct validity is related to the pos-
sible reluctance of interviewees to express negative opinions
on their organization or admit mistakes made in the past. To
minimize this threat, we emphasized that we are bound by
a confidentiality agreement, and no sensitive or personal
information would be revealed after the interviews.

6.2 Reliability

Reliability is concerned with the bias that researchers may
induce in data collection and analysis. One threat to reli-
ability could be different results obtained from work ar-
tifacts’ analysis. Specifically, when extracting source code
comments from studied projects, because the projects could
use multiple programming languages, defining and using
simple heuristic rules might not be able to extract all com-
ments from different programming languages. To reliably
and accurately extract code comments, instead of defining
such heuristic rules ourselves, we chose to use a third-
party library (CommnetParser), which supports multiple pro-
gramming languages, such as C++, Go, Python, Java, XML,
and Ruby. The studied projects mainly use C++ and XML
files. We manually verified the correctness of the extracted
comments with this library before collecting the data.

Another threat to reliability could be the impact of re-
searchers’ opinions on interviewees. To mitigate this threat,
all authors followed a specific protocol for the interviews
which is included in the replication package3. Besides, at
least two authors attended each interview, to ensure that
one interviewer did not bias the questions asked.

Furthermore, another threat to reliability could come
from the selection of the 15 SATD items for interviews. As
we can see in Table 11, the percentages of requirement,
documentation, and test debt are relatively low (always
below 15%). If we randomly collected five SATD items from
each source, certain types of SATD items would likely be
missing in the 15 SATD samples. This could result in the
sample misrepresenting the SATD types. To mitigate this
risk, we selected three or four SATD items for code/design
debt and one or two SATD items for other types of SATD
for each source (e.g., code comments) based on the SATD
type proportion (see Table 11). Thus, for the 15 SATD sample
items, we have ten code/design debt items, one requirement
debt item, two documentation debt items, and two test debt
items, which include different types of SATD items and
follow the distribution of different types of SATD. Therefore,
we consider this threat as, at least partially, mitigated.

The last threat to reliability comes from analyzing the
interview data. To minimize this threat, the first and sec-
ond authors carried out the Constant Comparative analysis
process [25], [26] independently; in case of discrepancy, we
compared and discussed the results until we were able to
reach an agreement.



20

6.3 External Validity

Threats to external validity concern the generalizability of
the results. In this study, we analyzed work artifacts and
conducted interviews in a large software company in the
embedded systems industry. Our findings may, to some
extent, generalize to other industrial projects of this applica-
tion domain and of similar size and complexity. In several
instances, such as time to close SATD and non-SATD issues
and the percentage of SATD in code comments, we have
demonstrated how our findings support previous studies.
However, we can not claim any further generalization.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed SATD in industrial projects
using machine learning techniques and conducted 12 inter-
views to understand: 1) characteristics of SATD in industrial
projects; 2) developers’ attitudes towards identified SATD
and statistics; 3) triggers to introduce and repay SATD; 4)
relations between SATD in source code comments, issues,
and commits; 5) practices used to manage SATD; 6) chal-
lenges and tooling ideas for SATD management.

The results present characteristics of SATD in indus-
trial projects and shed light on developers’ opinions on
SATD management and tooling support. This promotes
future studies in this area, targeting to support developers
in terms of SATD introduction, traceability, prioritization,
repayment, and tool support.

In the future, based on the results of this work, we
plan to characterize SATD in more industrial projects to
further validate the observation that industrial developers
tend to admit less SATD in code comments and more SATD
in issues and commits in comparison with open-source
developers, and explore the reasons behind it. Moreover, we
plan to conduct a large-scale study to analyze the closing
time and closing rate between different types of SATD in
open-source projects, in order to investigate the priority
differences between different types of SATD and non-SATD
issues. Furthermore, we plan to study the relations between
SATD in different sources and create an automatic approach
to identify related SATD items. Additionally, we plan to
create SATD documentation and repayment guidelines and
evaluate them with software practitioners. Next, we plan to
investigate the number of SATD items that are documented
or repaid in terms of the different reasons to document
SATD or pay back SATD. Lastly, we plan to build a tool
that supports SATD management for software practitioners
based on the desired features described in Section 4.9.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Manag-
ing Technical Debt in Software Engineering (Dagstuhl Seminar
16162),” Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016.

[2] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 91–100.

[3] K. Dai and P. Kruchten, “Detecting technical debt through issue
trackers.” in QuASoQ@ APSEC, 2017, pp. 59–65.

[4] Y. Li, M. Soliman, and P. Avgeriou, “Identification and Reme-
diation of Self-Admitted Technical Debt in Issue Trackers,” Pro-
ceedings - 46th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2020, pp. 495–503, 2020.

[5] F. Zampetti, G. Fucci, A. Serebrenik, and M. Di Penta, “Self-
admitted technical debt practices: a comparison between industry
and open-source,” Empirical Software Engineering, vol. 26, no. 6, pp.
1–32, 2021.

[6] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted techni-
cal debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1044–1062, 2017.

[7] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From
performance to explainability,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 28, no. 3, pp. 1–45, 2019.

[8] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt.” in
QuASoQ/TDA@ APSEC, 2016, pp. 68–71.

[9] S. Mensah, J. Keung, J. Svajlenko, K. E. Bennin, and Q. Mi, “On
the value of a prioritization scheme for resolving self-admitted
technical debt,” Journal of Systems and Software, vol. 135, pp. 37–54,
2018.

[10] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical
debt,” in 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2017, pp. 238–248.

[11] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal? an in-depth perspective,”
in 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 2018, pp. 526–536.

[12] Y. Li, M. Soliman, and P. Avgeriou, “Automatic identification of
self-admitted technical debt from four different sources,” arXiv
preprint arXiv:2202.02387, 2022.

[13] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying
different types of self-admitted technical debt,” in 2015 IEEE 7th
International Workshop on Managing Technical Debt (MTD). IEEE,
2015, pp. 9–15.

[14] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text min-
ing,” Empirical Software Engineering, vol. 23, no. 1, pp. 418–451,
2018.

[15] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, and H. Wu, “Detecting
and explaining self-admitted technical debts with attention-based
neural networks,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 871–882.

[16] Y. Li, M. Soliman, and P. Avgeriou, “Identifying self-admitted
technical debt in issue tracking systems using machine learning,”
Empirical Software Engineering, vol. 27, no. 131, Jul 2022.

[17] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) approach,” in Encyclopedia of Software Eng.
Hoboken, NJ, USA: John Wiley & Sons, Inc., jan 2002, pp. 528–532.

[18] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter, “Inter-smell
relations in industrial and open source systems: A replication
and comparative analysis,” in 2015 IEEE International conference
on software maintenance and evolution (ICSME). IEEE, 2015, pp.
121–130.

[19] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Pro-
cess aspects and social dynamics of contemporary code review:
Insights from open source development and industrial practice at
microsoft,” IEEE Transactions on Software Engineering, vol. 43, no. 1,
pp. 56–75, 2016.

[20] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted
technical debt,” Journal of Systems and Software, vol. 152, pp.
70–82, 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121219300457

[21] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research
in software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[22] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software
engineers: Data collection techniques for software field studies,”
Empirical software engineering, vol. 10, no. 3, pp. 311–341, 2005.

[23] M. DeJonckheere and L. M. Vaughn, “Semistructured interviewing
in primary care research: a balance of relationship and rigour,”
Family Medicine and Community Health, vol. 7, no. 2, 2019.

[24] I. Seidman, Interviewing as qualitative research: A guide for researchers
in education and the social sciences. Teachers college press, 2006.

[25] A. Strauss and J. Corbin, Basics of qualitative research. Sage
publications, 1990.

[26] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: a critical review and guidelines,” in

http://www.sciencedirect.com/science/article/pii/S0164121219300457
http://www.sciencedirect.com/science/article/pii/S0164121219300457


21

Proceedings of the 38th International Conference on Software Engineer-
ing, 2016, pp. 120–131.

[27] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50–60, 1947.

[28] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[29] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical
debt? surfacing elusive technical debt in issue trackers,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR). IEEE, 2016, pp. 327–338.

[30] Atlassian Corporation Plc, “What are issue types?” [Online]. Avail-
able: https://support.atlassian.com/jira-cloud-administration/
docs/what-are-issue-types/

[31] Microsoft Corporation, “Define features and epics
in azure boards to organize your product
and portfolio backlogs.” [Online]. Available: https:
//docs.microsoft.com/en-us/azure/devops/boards/backlogs/
define-features-epics?view=azure-devops&tabs=scrum-process/

[32] Atlassian Corporation Plc, “Defining priority field val-
ues.” [Online]. Available: https://confluence.atlassian.com/
adminjiraserver/defining-priority-field-values-938847101/

[33] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software
engineering: the state of the practice,” IEEE software, vol. 20, no. 6,
pp. 61–69, 2003.

[34] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the code:
Mining self-admitted technical debt in issue tracker systems,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 137–146.

[35] C. Ebert and C. Jones, “Embedded software: Facts, figures, and
future,” Computer, vol. 42, no. 4, pp. 42–52, 2009.

[36] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “Self-
admitted technical debt removal and refactoring actions: Co-
occurrence or more?” in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2019, pp. 186–
190.

[37] ——, “An empirical study on the co-occurrence between refactor-
ing actions and self-admitted technical debt removal,” Journal of
Systems and Software, vol. 178, p. 110976, 2021.

[38] M. A. d. Freitas Farias, J. A. Santos, M. Kalinowski, M. Mendonça,
and R. O. Spı́nola, “Investigating the identification of technical
debt through code comment analysis,” in International Conference
on Enterprise Information Systems. Springer, 2016, pp. 284–309.

[39] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul,
T. Sunetnanta, and K. Matsumoto, “Identifying design and re-
quirement self-admitted technical debt using n-gram idf,” in 2018
9th International Workshop on Empirical Software Engineering in Prac-
tice (IWESEP). IEEE, 2018, pp. 7–12.

[40] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd de-
tector: a text-mining-based self-admitted technical debt detection
tool,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, 2018, pp. 9–12.

[41] A. F. de O. Passos, M. A. de Freitas Farias, M. G.
de Mendonça Neto, and R. O. Spı́nola, “A study on identification
of documentation and requirement technical debt through code
comment analysis,” in Proceedings of the 17th Brazilian Symposium
on Software Quality, 2018, pp. 21–30.

[42] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1211–1229,
2018.

[43] S. Wattanakriengkrai, N. Srisermphoak, S. Sintoplertchaikul,
M. Choetkiertikul, C. Ragkhitwetsagul, T. Sunetnanta, H. Hata,
and K. Matsumoto, “Automatic classifying self-admitted technical
debt using n-gram idf,” in 2019 26th Asia-Pacific Software Engineer-
ing Conference (APSEC). IEEE, 2019, pp. 316–322.

[44] J. Flisar and V. Podgorelec, “Identification of self-admitted techni-
cal debt using enhanced feature selection based on word embed-
ding,” IEEE Access, vol. 7, pp. 106 475–106 494, 2019.

[45] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, Y. Zhou, and B. Xu,
“Mat: A simple yet strong baseline for identifying self-admitted
technical debt,” arXiv preprint arXiv:1910.13238, 2019.

[46] L. Rantala and M. Mäntylä, “Predicting technical debt from com-
mit contents: reproduction and extension with automated feature

selection,” Software Quality Journal, vol. 28, no. 4, pp. 1551–1579,
2020.

[47] A. Alhefdhi, H. K. Dam, Y. S. Nugroho, H. Hata, T. Ishio, and
A. Ghose, “A framework for self-admitted technical debt identifi-
cation and description,” arXiv preprint arXiv:2012.12466, 2020.

[48] M. A. de Freitas Farias, M. G. de Mendonça Neto, M. Kali-
nowski, and R. O. Spı́nola, “Identifying self-admitted technical
debt through code comment analysis with a contextualized vo-
cabulary,” Information and Software Technology, vol. 121, p. 106270,
2020.

[49] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for
it: identifying “on-hold” self-admitted technical debt,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3770–3798, 2020.

[50] R. Maipradit, B. Lin, C. Nagy, G. Bavota, M. Lanza, H. Hata,
and K. Matsumoto, “Automated identification of on-hold self-
admitted technical debt,” in 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
2020, pp. 54–64.

[51] R. M. Santos, I. M. Santos, M. C. R. Júnior, and M. G.
de Mendonça Neto, “Long term-short memory neural networks
and word2vec for self-admitted technical debt detection.” in ICEIS
(2), 2020, pp. 157–165.

[52] Z. Yu, F. M. Fahid, H. Tu, and T. Menzies, “Identifying self-
admitted technical debts with jitterbug: A two-step approach,”
IEEE Transactions on Software Engineering, 2020.

[53] L. Rantala, M. Mäntylä, and D. Lo, “Prevalence, contents and
automatic detection of kl-satd,” in 2020 46th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2020, pp. 385–388.

[54] X. Chen, D. Yu, X. Fan, L. Wang, and J. Chen, “Multiclass classi-
fication for self-admitted technical debt based on xgboost,” IEEE
Transactions on Reliability, 2021.

[55] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, and Y. Zhou, “How far
have we progressed in identifying self-admitted technical debts?
a comprehensive empirical study,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1–56,
2021.

[56] R. M. Santos, I. M. Santos, M. C. Júnior, and M. Mendonça,
“Evaluating a lstm neural network and a word2vec model in
the classification of self-admitted technical debts and their types
in code comments,” in Enterprise Information Systems, J. Filipe,
M. Śmiałek, A. Brodsky, and S. Hammoudi, Eds. Cham: Springer
International Publishing, 2021, pp. 542–559.

[57] D. Yu, L. Wang, X. Chen, and J. Chen, “Using bilstm with attention
mechanism to automatically detect self-admitted technical debt,”
Frontiers of Computer Science, vol. 15, no. 4, pp. 1–12, 2021.

[58] I. Sala, A. Tommasel, and F. Arcelli Fontana, “Debthunter: A
machine learning-based approach for detecting self-admitted tech-
nical debt,” in Evaluation and Assessment in Software Engineering,
2021, pp. 278–283.

[59] K. Zhu, M. Yin, and Y. Li, “Detecting and classifying self-admitted
of technical debt with cnn-bilstm,” in Journal of Physics: Conference
Series, vol. 1955, no. 1. IOP Publishing, 2021, p. 012102.

[60] S. Phaithoon, S. Wongnil, P. Pussawong, M. Choetkiertikul,
C. Ragkhitwetsagul, T. Sunetnanta, R. Maipradit, H. Hata, and
K. Matsumoto, “Fixme: A github bot for detecting and monitoring
on-hold self-admitted technical debt,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 1257–1261.

[61] T. Xiao, D. Wang, S. McIntosh, H. Hata, R. G. Kula, T. Ishio, and
K. Matsumoto, “Characterizing and mitigating self-admitted build
debt,” arXiv preprint arXiv:2102.09775, 2021.

[62] J. Yu, K. Zhao, J. Liu, X. Liu, Z. Xu, and X. Wang, “Exploiting gated
graph neural network for detecting and explaining self-admitted
technical debts,” Journal of Systems and Software, vol. 187, p. 111219,
2022.

[63] H. Tu and T. Menzies, “Debtfree: minimizing labeling cost in
self-admitted technical debt identification using semi-supervised
learning,” Empirical Software Engineering, vol. 27, no. 4, pp. 1–37,
2022.

[64] B. Russo, M. Camilli, and M. Mock, “Weaksatd: Detecting weak
self-admitted technical debt,” arXiv preprint arXiv:2205.02208,
2022.

[65] E. A. AlOmar, B. Christians, M. Busho, A. H. AlKhalid, A. Ouni,
C. Newman, and M. W. Mkaouer, “Satdbailiff-mining and tracking
self-admitted technical debt,” Science of Computer Programming,
vol. 213, p. 102693, 2022.

https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&tabs=scrum-process/
https://confluence.atlassian.com/adminjiraserver/defining-priority-field-values-938847101/
https://confluence.atlassian.com/adminjiraserver/defining-priority-field-values-938847101/


22

[66] G. Zhuang, Y. Qu, L. Li, X. Dou, and M. Li, “An empirical study
of gradient-based explainability techniques for self-admitted tech-
nical debt detection,” Journal of Internet Technology, vol. 23, no. 3,
pp. 631–641, 2022.

[67] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-
admitted,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 2017, pp. 216–226.

[68] B. S. de Lima, R. E. Garcia, and D. M. Eler, “Toward prioritization
of self-admitted technical debt: an approach to support decision
to payment,” Software Quality Journal, pp. 1–27, 2022.

[69] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Rework effort
estimation of self-admitted technical debt,” 2016.

[70] F. Zampetti, A. Serebrenik, and M. Di Penta, “Automatically learn-
ing patterns for self-admitted technical debt removal,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 355–366.


